
Analyzing the Impact of Events Through Surveys:
Formalizing Biases and Introducing the Dual Randomized Survey Design

Andrew Bertoli, Laura Jakli, and Henry Pascoe

Online Appendix

Contents

1 Glossary of Terms S2

2 Baseline Model S5

2.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S5

3 External Validity S10

4 Quota Sampling S11

4.1 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S12

4.2 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S13

4.3 Examples of How Quota Sampling Could Amplify Bias . . . . . . . . . . . . . . . . . . . . . . . . S18

5 Rolling Cross-Sections S18

5.1 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S20

5.2 Deriving the Bias When Estimating τ̄k|w=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S28

5.3 Comparing Bias in the Rolling Cross-Section Design to Bias in the Baseline Model . . . . . . . . . S32

6 Panel Designs S35

6.1 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S35

7 Dual Randomized Survey (DRS) Design S37

7.1 Proof of Proposition 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S38

8 Pre-event/Post-event Survey Designs in APSR, AJPS, and JOP (2015-24) S43

S1



1 Glossary of Terms

Notation for Baseline Model

yikb: Individual i’s truthful Wave 1 response

yikbo: Individual i’s observed Wave 1 response

yikt: Individual i’s truthful Wave 2 response

yikto: Individual i’s observed Wave 2 response

yikc: Individual i’s truthful Wave 2 response in the counterfactual world where the event “did not happen”

yikbc: Individual i’s truthful Wave 1 response in the counterfactual world where the event “did not happen”

nb: Number of Wave 1 respondents

na: Number of Wave 2 respondents

N : Number of subjects in the target population

rib: Indicator variable denoting whether individual i completed the survey in Wave 1

ria: Indicator variable denoting whether individual i completed the survey in Wave 2

ϵ̄kb|rb=1: Average measurement error in Wave 1

ϵ̄kt|ra=1: Average measurement error in Wave 2

Additional Notation for Quota Sampling

gb: The number of people in the Wave 1 quota group

ga: The number of people in the Wave 2 quota group

eb: The number of people in Wave 1 who would have completed the survey but who were excluded

due to quota constraints

ea: The number of people in Wave 2 who would have completed the survey but who were excluded

due to quota constraints

nb: The number of potential Wave 1 respondents when quotas are ignored (gb + eb)

na: The number of potential Wave 2 respondents when quotas are ignored (ga + ea)

qi: Indicator variable denoting whether individual i is in the quota sample

ϵ̄kb|rb=1,q=1: Average measurement error in the Wave 1 quota group

ϵ̄kt|ra=1,q=1: Average measurement error in the Wave 2 quota group
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Additional Notation for Rolling Cross-Sections

nw: The total number of people who might complete the survey in either wave (this number includes the

always-responders and the sometimes-responders for both waves)

n∗: The number of always-responders

mb: The number of sometimes-responders who would only complete the survey in Wave 1

ma: The number of sometimes-responders who would only complete the survey in Wave 2

wb: The number of individuals who would complete the survey if assigned to Wave 1

wa: The number of individuals who would complete the survey if assigned to Wave 2

n: The total number of Wave 1 and Wave 2 respondents (random variable)

nb: The number of Wave 1 respondents (random variable)

na: The number of Wave 2 respondents (random variable)

ui: Indicator variable denoting whether individual i is an always-responder

si1: Indicator variable denoting whether individual i would only complete the survey if assigned to Wave 1

si2: Indicator variable denoting whether individual i would only complete the survey if assigned to Wave 2

wi: Indicator variable denoting whether individual i would complete the survey in at least one of the two

waves

wi1: Indicator variable denoting whether individual i would complete the survey if assigned to Wave 1

wi2: Indicator variable denoting whether individual i would complete the survey if assigned to Wave 2

ϵ̄ikb|w1=1: Average measurement error for the respondents who would complete the survey in Wave 1

ϵ̄ikt|w2=1: Average measurement error for the respondents who would complete the survey in Wave 2

α: The proportion of Wave 1 and Wave 2 respondents who are sometimes-responders

(assumed to be the same in both waves for the comparison to the baseline model)

Additional Notation for the Panel Design

yika: Individual i’s truthful Wave 2 response after completing the same survey in Wave 1

yikao: Individual i’s observed Wave 2 response after completing the same survey in Wave 1

n∗: The number of always-responders

ui: Indicator variable denoting whether individual i is an always-responder

ϵ̄kb|u=1: Average Wave 1 measurement error for the always-responders

ϵ̄ka|u=1: Average Wave 2 measurement error for the always-responders
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Additional Notation for the Dual Randomized Survey Design

yika: Individual i’s truthful Wave 2 response after completing Survey B in Wave 1

yikao: Individual i’s observed Wave 2 response after completing Survey B in Wave 1

n∗: The number of always-responders

mb: The number of sometimes-responders who would only complete both surveys if randomized to take

Survey A in Wave 1

ma: The number of sometimes-responders who would only complete both surveys if randomized to take

Survey A in Wave 2

wb: The number of possible respondents who might be in our sample as someone who completed Survey

A in Wave 1

wa: The number of possible respondents who might be in our sample as someone who completed Survey

A in Wave 2

n: The total number of Wave 1 and Wave 2 respondents (random variable)

nb: The number of Wave 1 respondents (random variable)

na: The number of Wave 2 respondents (random variable)

ui: Indicator variable denoting whether individual i is an always-responder

si1: Indicator variable denoting whether individual i would only complete both surveys if randomized to

take Survey A in Wave 1

si2: Indicator variable denoting whether individual i would only complete both surveys if randomized to

take Survey A in Wave 2

wi1: Indicator variable denoting whether individual i would complete both surveys if randomized to

take Survey A in Wave 1

wi2: Indicator variable denoting whether individual i would complete both surveys if randomized to

take Survey A in Wave 2

ϵ̄ikb|w1=1: Average Wave 1 measurement error for the potential respondents who would complete both surveys

if randomized to take Survey A in Wave 1

ϵ̄ika|w2=1: Average Wave 2 measurement error for the potential respondents who would complete both surveys

if randomized to take Survey A in Wave 2
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2 Baseline Model

2.1 Proof of Proposition 1

Proposition 1. Bias in the baseline model can be written as

Bias
(
τ̂k|ra=1

)
= BiasX

(
τ̂k|ra=1

)
+BiasT

(
τ̂k|ra=1

)
+BiasA

(
τ̂k|ra=1

)
+BiasM

(
τ̂k|ra=1

)
(A1)

where

BiasX
(
τ̂k|ra=1

)
= ȳikb|ra=1 − ȳikb|rb=1 (Demographic Bias)

BiasT
(
τ̂k|ra=1

)
= ȳikc|ra=1 − ȳikbc|ra=1 (Temporal Bias)

BiasA
(
τ̂k|ra=1

)
= ȳikbc|ra=1 − ȳikb|ra=1 (Anticipation Bias)

BiasM
(
τ̂k|ra=1

)
= ϵ̄kt|ra=1 − ϵ̄kb|rb=1 (Differential Misreporting)

Proof. The bias in τ̂k|ra=1 can be written as

Bias
(
τ̂k|ra=1

)
= E

[
τ̂k|ra=1

]
− τ̄k|ra=1 (A2)

= E

[
1
na

na∑
i=1

yikto|ra=1 − 1
nb

nb∑
i=1

yikbo|rb=1

]
− 1

na

na∑
i=1

(
yikt|ra=1 − yikc|ra=1

)
= 1

na

na∑
i=1

yikto|ra=1 − 1
nb

nb∑
i=1

yikbo|rb=1 − 1
na

na∑
i=1

yikt|ra=1 +
1
na

na∑
i=1

yikc|ra=1

=

(
1
na

na∑
i=1

yikto|ra=1 − 1
na

na∑
i=1

yikt|ra=1

)
+ 1

na

na∑
i=1

yikc|ra=1 − 1
nb

nb∑
i=1

yikbo|rb=1

The first of the two expressions in the line above is just the average measurement error in the Wave 2 respondents’

answers. We can denote this average measurement error as

ϵ̄kt|ra=1 =
1
na

na∑
i=1

yikto|ra=1 − 1
na

na∑
i=1

yikt|ra=1

Further, we can define the average measurement error in the Wave 1 respondents’ answers as

ϵ̄kb|rb=1 =
1
nb

nb∑
i=1

yikbo|rb=1 − 1
nb

nb∑
i=1

yikb|rb=1
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We can now rewrite Equation A2 as

Bias
(
τ̂k|ra=1

)
= ϵ̄kt|ra=1 +

1
na

na∑
i=1

yikc|ra=1 −

(
1
nb

nb∑
i=1

yikb|rb=1 + ϵ̄kb|rb=1

)
(A3)

= 1
na

na∑
i=1

yikc|ra=1 − 1
nb

nb∑
i=1

yikb|rb=1 + ϵ̄kt|ra=1 − ϵ̄kb|rb=1

The first of the two differences in Equation A3 is the average difference between Wave 2 respondents’ truthful

counterfactual answers and Wave 1 respondents’ pre-event truthful answers. Since this expression indexes over two

distinct groups of respondents surveyed in two different time periods, it is challenging to interpret. We can gain

traction by modifying Equation A3 slightly. First, we imagine the truthful answers of the Wave 2 respondents had

they instead been surveyed in Wave 1. In other words, we imagine the yikb values for Wave 2 respondents. We can

then add and subtract the average of these yikb values to Equation A3:

Bias
(
τ̂k|ra=1

)
= 1

na

na∑
i=1

yikc|ra=1 − 1
nb

nb∑
i=1

yikb|rb=1 + ϵ̄kt|ra=1 − ϵ̄kb|rb=1+ (A4)(
1
na

na∑
i=1

yikb|ra=1 − 1
na

na∑
i=1

yikb|ra=1

)

By reordering the terms, we get:

Bias
(
τ̂k|ra=1

)
=

(
1
na

na∑
i=1

yikb|ra=1 − 1
nb

nb∑
i=1

yikb|rb=1

)
+

(
1
na

na∑
i=1

yikc|ra=1 − 1
na

na∑
i=1

yikb|ra=1

)
+ (A5)

ϵ̄kt|ra=1 − ϵ̄kb|rb=1

The first expression in Equation A5 is just the average difference in truthful responses caused by baseline demo-

graphic differences between Wave 1 and Wave 2 respondents. We can label this source of bias “demographic bias”

and write it formally as BiasX(τ̂k|ra=1):

Definition 1 (Demographic Bias).

BiasX
(
τ̂k|ra=1

)
≡ 1

na

na∑
i=1

yikb|ra=1 − 1
nb

nb∑
i=1

yikb|rb=1 = ȳikb|ra=1 − ȳikb|rb=1

We can then rewrite Equation A5 as
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Bias
(
τ̂k|ra=1

)
= BiasX

(
τ̂k|ra=1

)
+

(
1
na

na∑
i=1

yikc|ra=1 − 1
na

na∑
i=1

yikb|ra=1

)
+
(
ϵ̄kt|ra=1 − ϵ̄kb|rb=1

)
(A6)

The middle expression is now limited to Wave 2 respondents only. It represents the average difference between

their truthful Wave 2 answers in the counterfactual world where the event did not happen and their truthful Wave 1

answers had they completed the survey in Wave 1. Interpretation of this term now depends on what we mean by “the

counterfactual world where the event did not happen.” There are multiple plausible versions of this counterfactual

world and which counterfactual we choose impacts how we think about this expression.

One way we might conceive of this counterfactual is in a manner that we would not expect to have an impact

on respondent beliefs or attitudes about issues related to the survey: for example, a scenario wherein the event was

unexpectedly postponed the day prior. Such a counterfactual might be that the day before a political debate, the event

is postponed for two weeks due to a water leak in the scheduled event host facility. With this counterfactual in mind,

the difference between Wave 2 respondents’ yikb and yikc values should merely be a short-term temporal difference.

Its size would depend on whether any other salient events happened between Waves 1 and 2. It might also be affected

by other temporal factors like the weather, which could impact respondents’ moods, or if Wave 1 was fielded on a

weekday whereas Wave 2 was fielded on a weekend.

However, we could imagine an alternative counterfactual wherein the event was never scheduled. In the debate

example, this counterfactual might be that political parties had agreed a year prior to not hold any debates before the

next election. With this counterfactual in mind, the difference between yikb and yikc may not just be determined by

short-term temporal factors. Rather, yikb could be influenced by anticipation of the event in a way that yikc would

not. For example, the lead-up to the debate might feature increased media attention to the electoral race that would

not have occurred in the world where the event was never scheduled.

To distinguish between bias from temporal and anticipation factors, we first consider another potential outcome—

the Wave 2 respondents’ truthful answers had they been surveyed in Wave 1 and if the event “had never happened.”

We can denote this counterfactual outcome by yikbc. We can then take Equation A6 and add and subtract the average

of this potential outcome for Wave 2 respondents.

Bias
(
τ̂k|ra=1

)
= BiasX

(
τ̂k|ra=1

)
+

(
1
na

na∑
i=1

yikc|ra=1 − 1
na

na∑
i=1

yikb|ra=1

)
+(

1
na

na∑
i=1

yikbc|ra=1 − 1
na

na∑
i=1

yikbc|ra=1

)
+
(
ϵ̄kt|ra=1 − ϵ̄kb|rb=1

)
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By reordering the terms, we obtain

Bias
(
τ̂k|ra=1

)
= BiasX

(
τ̂k|ra=1

)
+

(
1
na

na∑
i=1

yikc|ra=1 − 1
na

na∑
i=1

yikbc|ra=1

)
+ (A7)(

1
na

na∑
i=1

yikbc|ra=1 − 1
na

na∑
i=1

yikb|ra=1

)
+
(
ϵ̄kt|ra=1 − ϵ̄kb|rb=1

)
The first of these two expressions now represents the average difference between the hypothetical post-event

and pre-event truthful answers of Wave 2 respondents in the world where the event did not happen. Thus, it purely

captures bias caused by temporal differences between Waves 1 and 2.

Definition 2 (Temporal Bias).

BiasT
(
τ̂k|ra=1

)
≡ 1

na

na∑
i=1

yikc|ra=1 − 1
na

na∑
i=1

yikbc|ra=1 = ȳikc|ra=1 − ȳikbc|ra=1

The second expression in Equation A7 represents the average difference in the hypothetical truthful Wave 1

answers of the Wave 2 respondents in the worlds where the event did and did not happen. It thereby captures bias

caused by anticipation factors.

Definition 3 (Anticipation Bias).

BiasA
(
τ̂k|ra=1

)
≡ 1

na

na∑
i=1

yikbc|ra=1 − 1
na

na∑
i=1

yikb|ra=1 = ȳikbc|ra=1 − ȳikb|ra=1

We can now rewrite Equation A7 as

Bias
(
τ̂k|ra=1

)
= BiasX

(
τ̂k|ra=1

)
+BiasT

(
τ̂k|ra=1

)
+BiasA

(
τ̂k|ra=1

)
+
(
ϵ̄kt|ra=1 − ϵ̄kb|rb=1

)
(A8)

The final difference in Equation A8 is simply the average difference in measurement error in the Wave 1 and

Wave 2 respondents’ answers.

Definition 4 (Differential Misreporting Bias).

BiasM
(
τ̂k|ra=1

)
≡ ϵ̄kt|ra=1 − ϵ̄kb|rb=1
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We can therefore rewrite the overall bias term as the sum of the demographic, temporal, anticipation, and differ-

ential misreporting biases given by Definitions 1-4.

Bias
(
τ̂k|ra=1

)
= BiasX

(
τ̂k|ra=1

)
+BiasT

(
τ̂k|ra=1

)
+BiasA

(
τ̂k|ra=1

)
+BiasM

(
τ̂k|ra=1

)
(A9)

where

BiasX
(
τ̂k|ra=1

)
= ȳikb|ra=1 − ȳikb|rb=1

BiasT
(
τ̂k|ra=1

)
= ȳikc|ra=1 − ȳikbc|ra=1

BiasA
(
τ̂k|ra=1

)
= ȳikbc|ra=1 − ȳikb|ra=1

BiasM
(
τ̂k|ra=1

)
= ϵ̄kt|ra=1 − ϵ̄kb|rb=1
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3 External Validity

Consider the context where the target parameter that we want to estimate is the average causal effect for the population

of interest:

τ̄k =
1
N

N∑
i=1

(yikt − yikc)

Like when we estimated the average treatment effect for the Wave 2 respondents in our baseline model, the estimator

that we will use to estimate τ̄k is the average difference between the Wave 2 and Wave 1 respondents’ answers to

question k of the survey:

τ̂k = τ̂k|ra=1 =
1
na

na∑
i=1

yikto|ra=1 − 1
nb

nb∑
i=1

yikbo|rb=1

The bias in τ̂k can then be written as

Bias (τ̂k) = BiasX (τ̂k) +BiasT (τ̂k) +BiasA (τ̂k) +BiasM (τ̂k) +BiasH (τ̂k) (A10)

where

BiasX (τ̂k) = ȳikb|ra=1 − ȳikb|rb=1

BiasT (τ̂k) = ȳikc|ra=1 − ȳikbc|ra=1

BiasA (τ̂k) = ȳikbc|ra=1 − ȳikb|ra=1

BiasM (τ̂k) = ϵ̄kt|ra=1 − ϵ̄kb|rb=1

BiasH (τ̂k) = τ̄k|ra=1 − τ̄k

This expression for the overall bias is the same as in our baseline model, except for the BiasH (τ̂k) term that ac-

counts for potential bias caused by the Wave 2 respondents having a heterogeneous treatment effect compared to the

treatment effect in the overall population.

Deriving the bias in τ̂k is trivial. Begin by noting that Bias
(
τ̂k|ra=1

)
= E

[
τ̂k|ra=1

]
− τ̄k|ra=1, which can be

rewritten as E
[
τ̂k|ra=1

]
= Bias

(
τ̂k|ra=1

)
+ τ̄k|ra=1. Since τ̂k = τ̂k|ra=1, we have E[τ̂k] = E[τ̂k|ra=1], so we can

change the expression to E [τ̂k] = Bias
(
τ̂k|ra=1

)
+ τ̄k|ra=1. The bias in τ̂k is then just
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Bias (τ̂k) = E [τ̂k]− τ̄k

= Bias
(
τ̂k|ra=1

)
+ τ̄k|ra=1 − τ̄k

= Bias
(
τ̂k|ra=1

)
+BiasH (τ̂k)

= BiasX
(
τ̂k|ra=1

)
+BiasT

(
τ̂k|ra=1

)
+BiasA

(
τ̂k|ra=1

)
+BiasM

(
τ̂k|ra=1

)
+BiasH (τ̂k)

= BiasX (τ̂k) +BiasT (τ̂k) +BiasA (τ̂k) +BiasM (τ̂k) +BiasH (τ̂k)

where

BiasX (τ̂k) = BiasX
(
τ̂k|ra=1

)
= ȳikb|ra=1 − ȳikb|rb=1

BiasT (τ̂k) = BiasT
(
τ̂k|ra=1

)
= ȳikc|ra=1 − ȳikbc|ra=1

BiasA (τ̂k) = BiasA
(
τ̂k|ra=1

)
= ȳikbc|ra=1 − ȳikb|ra=1

BiasM (τ̂k) = BiasM
(
τ̂k|ra=1

)
= ϵ̄kt|ra=1 − ϵ̄kb|rb=1

BiasH (τ̂k) = τ̄k|ra=1 − τ̄k

4 Quota Sampling

In this design, we survey two groups of people before and after the event, selecting participants based on covariates

to try to make the two groups similar to each other and to the total population. Let n be the total number of people

who we consider surveying, with na denoting the number in Wave 2 and nb denoting the number in Wave 1. As in

the article, let ria ∈ {0, 1} denote whether individual i completed the survey in Wave 2, and let rib ∈ {0, 1} denote

whether individual i completed the survey in Wave 1. In addition, let qi ∈ {0, 1} denote whether individual i is in

our quota group for either Wave 1 or Wave 2.

Building off this notation, we can let ga denote the number of people in the Wave 2 quota group and gb denote

the number of people in the Wave 1 quota group. We can also define g = ga + gb as the total number of people in our

quota sample. Individuals were not randomized to be contacted in Wave 1 or Wave 2, so g, ga, gb are all parameters,

not random variables.
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4.1 Proof of Proposition 2

Proposition 2. Bias in the quota sampling design is given by

Bias
(
τ̂k|ra=1,q=1

)
= BiasX

(
τ̂k|ra=1,q=1

)
+BiasT

(
τ̂k|ra=1,q=1

)
+BiasA

(
τ̂k|ra=1,q=1

)
+BiasM

(
τ̂k|ra=1,q=1

)
where

BiasX
(
τ̂k|ra=1,q=1

)
= ȳikb|ra=1,q=1 − ȳikb|rb=1,q=1

BiasT
(
τ̂k|ra=1,q=1

)
= ȳikc|ra=1,q=1 − ȳikbc|ra=1,q=1

BiasA
(
τ̂k|ra=1,q=1

)
= ȳikbc|ra=1,q=1 − ȳikb|ra=1,q=1

BiasM
(
τ̂k|ra=1,q=1

)
= ϵ̄kt|ra=1,q=1 − ϵ̄kb|rb=1,q=1

Proof. The causal parameter we want to estimate is the average causal effect of the event on the Wave 2 quota group’s

truthful responses to question k of the survey:

τ̄k|ra=1,q=1 =
1
ga

ga∑
i=1

(
yikt|ra=1,q=1 − yikc|ra=1,q=1

)

The statistic that we will use to estimate this parameter is the average difference between the reported answers of the

ga respondents who completed our survey in Wave 2 and the gb respondents who completed it in Wave 1.

τ̂k,ra=1,q=1 =
1
ga

ga∑
i=1

yikto|ra=1,q=1 − 1
gb

gb∑
i=1

yikbo|rb=1,q=1

Following the same procedures from the analysis in Section 2 of the article, the bias in this estimator can be

rewritten as

Bias
(
τ̂k|ra=1,q=1

)
= BiasX

(
τ̂k|ra=1,q=1

)
+BiasT

(
τ̂k|ra=1,q=1

)
+BiasA

(
τ̂k|ra=1,q=1

)
+BiasM

(
τ̂k|ra=1,q=1

)

where
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BiasX
(
τ̂k|ra=1,q=1

)
= ȳikb|ra=1,q=1 − ȳikb|rb=1,q=1

BiasT
(
τ̂k|ra=1,q=1

)
= ȳikc|ra=1,q=1 − ȳikbc|ra=1,q=1

BiasA
(
τ̂k|ra=1,q=1

)
= ȳikbc|ra=1,q=1 − ȳikb|ra=1,q=1

BiasM
(
τ̂k|ra=1,q=1

)
= ϵ̄kt|ra=1,q=1 − ϵ̄kb|rb=1,q=1

The difference between this overall bias term and the Bias
(
τ̂k|ra=1

)
expression that we derived in Section 2 of the

article is that this term restricts the focus to our quota sample.

4.2 Proof of Proposition 3

Proposition 3. Quota designs reduce bias if and only if

∣∣∣∣Bias
(
τ̂k|ra=1,q=1

) ∣∣∣∣ < ∣∣∣∣ ( ga
na

)
Bias

(
τ̂k|ra=1,q=1

)
+
(

ea
na

)
Bias

(
τ̂k|ra=1,q=0

)
+(

ga
na

− gb
nb

) (
ȳikbo|rb=1,q=1 − ȳikbo|rb=1,q=0

) ∣∣∣∣
When the inequality is flipped, quota sampling amplifies bias.

Proof. Whether quota sampling improves on our baseline model depends in part on whether the bias in the excluded

group is smaller or in the opposite direction as the bias in the quota group. It also depends, to some extent, on external

validity considerations, since using the quota sampling estimator changes the parameter that we are estimating.

Focusing just on the potential bias reduction, the difference in bias between the baseline model and quota sam-

pling can be written as

∣∣Bias
(
τ̂k|ra=1

) ∣∣− ∣∣Bias
(
τ̂k|ra=1,q=1

) ∣∣ =∣∣BiasX
(
τ̂k|ra=1

)
+BiasT

(
τ̂k|ra=1

)
+

BiasA
(
τ̂k|ra=1

)
+BiasM

(
τ̂k|ra=1

) ∣∣−∣∣BiasX
(
τ̂k|ra=1,q=1

)
+BiasT

(
τ̂k|ra=1,q=1

)
+

BiasA
(
τ̂k|ra=1,q=1

)
+BiasM

(
τ̂k|ra=1,q=1

) ∣∣
We can decompose Bias(τ̂k|ra=1) into a weighted average of the bias in the sub-sample who we would have

surveyed if we had done quota sampling and the bias in the sub-sample who we would have excluded in the quota

sampling design. We will denote the number of Wave 2 individuals who would have been excluded under quota
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sampling as ea = na − ga. Likewise, we will denote the number of Wave 1 individuals who would have been

excluded under quota sampling as eb = nb − gb.

We then have

Bias
(
τ̂k|ra=1

)
=BiasX

(
τ̂k|ra=1

)
+BiasT

(
τ̂k|ra=1

)
+BiasA

(
τ̂k|ra=1

)
+BiasM

(
τ̂k|ra=1

)
Bias

(
τ̂k|ra=1

)
= 1

na

na∑
i=1

yikb|ra=1 − 1
nb

nb∑
i=1

yikb|rb=1+

1
na

na∑
i=1

yikbc|ra=1 − 1
na

na∑
i=1

yikb|ra=1+

1
na

na∑
i=1

yikc|ra=1 − 1
na

na∑
i=1

yikbc|ra=1+

ϵ̄kt|ra=1 − ϵ̄kb|rb=1

which we can separate into

Bias
(
τ̂k|ra=1

)
= 1

na

ga∑
i=1

yikb|ra=1,q=1 +
1
na

ea∑
i=1

yikb|ra=1,q=0 −

(
1
nb

gb∑
i=1

yikb|rb=1,q=1 +
1
nb

eb∑
i=1

yikb|rb=1,q=0

)
+

1
na

ga∑
i=1

yikbc|ra=1,q=1 +
1
na

ea∑
i=1

yikbc|ra=1,q=0 −

(
1
na

ga∑
i=1

yikb|ra=1,q=1 +
1
na

ea∑
i=1

yikb|ra=1,q=0

)
+

1
na

ga∑
i=1

yikc|ra=1,q=1 +
1
na

ea∑
i=1

yikc|ra=1,q=0 −

(
1
na

ga∑
i=1

yikbc|ra=1,q=1 +
1
na

ea∑
i=1

yikbc|ra=1,q=0

)
+

1
na

ga∑
i=1

yikto|ra=1,q=1 +
1
na

ea∑
i=1

yikto|ra=1,q=0 −

(
1
na

ga∑
i=1

yikt|ra=1,q=1 +
1
na

ea∑
i=1

yikt|ra=1,q=0

)
−

1
nb

gb∑
i=1

yikbo|rb=1,q=1 +
1
nb

eb∑
i=1

yikbo|rb=1,q=0 −

(
1
nb

gb∑
i=1

yikb|rb=1,q=1 +
1
nb

eb∑
i=1

yikb|rb=1,q=0)

)

We can simplify this expression as follows
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Bias
(
τ̂k|ra=1

)
=
(

ga
na

)
ȳikb|ra=1,q=1 +

(
ea
na

)
ȳikb|ra=1,q=0 −

((
gb
nb

)
ȳikb|rb=1,q=1 +

(
eb
nb

)
ȳikb|rb=1,q=0

)
+(

ga
na

)
ȳikbc|ra=1,q=1 +

(
ea
na

)
ȳikbc|ra=1,q=0 −

((
ga
na

)
ȳikb|ra=1,q=1 +

(
ea
na

)
ȳikb|ra=1,q=0

)
+(

ga
na

)
ȳikc|ra=1,q=1 +

(
ea
na

)
ȳikc|ra=1,q=0 −

((
ga
na

)
ȳikbc|ra=1,q=1 +

(
ea
na

)
ȳikbc|ra=1,q=0

)
+(

ga
na

)
ȳikto|ra=1,q=1 +

(
ea
na

)
ȳikto|ra=1,q=0 −

((
ga
na

)
ȳikt|ra=1,q=1 +

(
ea
na

)
ȳikt|ra=1,q=0

)
−((

gb
nb

)
ȳikbo|rb=1,q=1 +

(
eb
nb

)
ȳikbo|rb=1,q=0 −

((
gb
nb

)
ȳikb|rb=1,q=1 +

(
eb
nb

)
ȳikb|rb=1,q=0

))
Bias

(
τ̂k|ra=1

)
=
(

ga
na

)
ȳikb|ra=1,q=1 −

(
gb
nb

)
ȳikb|rb=1,q=1 +

(
ea
na

)
ȳikb|ra=1,q=0 −

(
eb
nb

)
ȳikb|rb=1,q=0+(

ga
na

)
ȳikbc|ra=1,q=1 −

(
ga
na

)
ȳikb|ra=1,q=1 +

(
ea
na

)
ȳikbc|ra=1,q=0 −

(
ea
na

)
ȳikb|ra=1,q=0+(

ga
na

)
ȳikc|ra=1,q=1 −

(
ga
na

)
ȳikbc|ra=1,q=1 +

(
ea
na

)
ȳikc|ra=1,q=0 −

(
ea
na

)
ȳikbc|ra=1,q=0+(

ga
na

)
ȳikto|ra=1,q=1 −

(
ga
na

)
ȳikt|ra=1,q=1 −

((
gb
nb

)
ȳikbo|rb=1,q=1 −

(
gb
nb

)
ȳikb|rb=1,q=1

)
+(

ea
na

)
ȳikto|ra=1,q=0 −

(
ea
na

)
ȳikt|ra=1,q=0 −

((
eb
nb

)
ȳikbo|rb=1,q=0 −

(
eb
nb

)
ȳikb|rb=1,q=0

)
Bias

(
τ̂k|ra=1

)
=
(

ga
na

)
ȳikb|ra=1,q=1 −

(
gb
nb

)
ȳikb|rb=1,q=1 +

(
ea
na

)
ȳikb|ra=1,q=0 −

(
eb
nb

)
ȳikb|rb=1,q=0+(

ga
na

)
BiasT

(
τ̂k|ra=1,q=1

)
+
(

ea
na

)
BiasT

(
τ̂k|ra=1,q=0

)
+(

ga
na

)
BiasA

(
τ̂k|ra=1,q=1

)
+
(

ea
na

)
BiasA

(
τ̂k|ra=1,q=0

)
+(

ga
na

)
ϵ̄kt|ra=1,q=1 −

(
gb
nb

)
ϵ̄kb|rb=1,q=1 +

(
ea
na

)
ϵ̄kt|ra=1,q=0 −

(
eb
nb

)
ϵ̄kb|rb=1,q=0

Bias
(
τ̂k|ra=1

)
=
(

ga
na

)
ȳikb|ra=1,q=1 −

(
gbna

nanb

)
ȳikb|rb=1,q=1+(

ea
na

)
ȳikb|ra=1,q=0 −

(
ebna

nanb

)
ȳikb|rb=1,q=0+(

ga
na

)
BiasT

(
τ̂k|ra=1,q=1

)
+
(

ea
na

)
BiasT

(
τ̂k|ra=1,q=0

)
+(

ga
na

)
BiasA

(
τ̂k|ra=1,q=1

)
+
(

ea
na

)
BiasA

(
τ̂k|ra=1,q=0

)
+(

ga
na

)
ϵ̄kt|ra=1,q=1 −

(
gbna

nanb

)
ϵ̄kb|rb=1,q=1+(

ea
na

)
ϵ̄kt|ra=1,q=0 −

(
ebna

nanb

)
ϵ̄kb|rb=1,q=0
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Bias
(
τ̂k|ra=1

)
=
(

ga
na

)(
ȳikb|ra=1,q=1 −

(
gbna

ganb

)
ȳikb|rb=1,q=1

)
+(

ea
na

)(
ȳikb|ra=1,q=0 −

(
ebna

eanb

)
ȳikb|rb=1,q=0

)
+(

ga
na

)
BiasT

(
τ̂k|ra=1,q=1

)
+
(

ea
na

)
BiasT

(
τ̂k|ra=1,q=0

)
+(

ga
na

)
BiasA

(
τ̂k|ra=1,q=1

)
+
(

ea
na

)
BiasA

(
τ̂k|ra=1,q=0

)
(

ga
na

)(
ϵ̄kt|ra=1,q=1 −

(
gbna

ganb

)
ϵ̄kb|rb=1,q=1

)
+(

ea
na

)(
ϵ̄kt|ra=1,q=0 −

(
ebna

eanb

)
ϵ̄kb|rb=1,q=0

)
Bias

(
τ̂k|ra=1

)
=
(

ga
na

)(
ȳikb|ra=1,q=1 − ȳikb|rb=1,q=1 + ȳikb|rb=1,q=1 −

(
gbna

ganb

)
ȳikb|rb=1,q=1

)
+(

ea
na

)(
ȳikb|ra=1,q=0 − ȳikb|rb=1,q=0 + ȳikb|rb=1,q=0 −

(
ebna

eanb

)
ȳikb|rb=1,q=0

)
+(

ga
na

)
BiasT

(
τ̂k|ra=1,q=1

)
+
(

ea
na

)
BiasT

(
τ̂k|ra=1,q=0

)
+(

ga
na

)
BiasA

(
τ̂k|ra=1,q=1

)
+
(

ea
na

)
BiasA

(
τ̂k|ra=1,q=0

)
+(

ga
na

)(
ϵ̄kt|ra=1,q=1 − ϵ̄kb|rb=1,q=1 + ϵ̄kb|rb=1,q=1 −

(
gbna

ganb

)
ϵ̄kb|rb=1,q=1

)
+(

ea
na

)(
ϵ̄kt|ra=1,q=0 − ϵ̄kb|rb=1,q=0 + ϵ̄kb|rb=1,q=0 −

(
ebna

eanb

)
ϵ̄kb|rb=1,q=0

)
Bias

(
τ̂k|ra=1

)
=
(

ga
na

)
BiasX

(
τ̂k|ra=1,q=1

)
+
(

ga
na

)(
ȳikb|rb=1,q=1 −

(
gbna

ganb

)
ȳikb|rb=1,q=1

)
+(

ea
na

)
BiasX

(
τ̂k|ra=1,q=0

)
+
(

ea
na

)(
ȳikb|rb=1,q=0 −

(
ebna

eanb

)
ȳikb|rb=1,q=0

)
+(

ga
na

)
BiasT

(
τ̂k|ra=1,q=1

)
+
(

ea
na

)
BiasT

(
τ̂k|ra=1,q=0

)
+(

ga
na

)
BiasA

(
τ̂k|ra=1,q=1

)
+
(

ea
na

)
BiasA

(
τ̂k|ra=1,q=0

)
+(

ga
na

)
BiasM

(
τ̂k|ra=1,q=1

)
+
(

ga
na

)(
ϵ̄kb|rb=1,q=1 −

(
gbna

ganb

)
ϵ̄kb|rb=1,q=1

)
+(

ea
na

)
BiasM

(
τ̂k|ra=1,q=0

)
+
(

ea
na

)(
ϵ̄kb|rb=1,q=0 −

(
ebna

eanb

)
ϵ̄kb|rb=1,q=0

)

S16



Bias
(
τ̂k|ra=1

)
=
(

ga
na

)
Bias

(
τ̂k|ra=1,q=1

)
+
(

ea
na

)
Bias

(
τ̂k|ra=1,q=0

)
+(

ga
na

)
ȳikb|rb=1,q=1 −

(
gb
nb

)
ȳikb|rb=1,q=1 +

(
ea
na

)
ȳikb|rb=1,q=0 −

(
eb
nb

)
ȳikb|rb=1,q=0+(

ga
na

)
ϵ̄kb|rb=1,q=1 −

(
gb
nb

)
ϵ̄kb|rb=1,q=1 +

(
ea
na

)
ϵ̄kb|rb=1,q=0 −

(
eb
nb

)
ϵ̄kb|rb=1,q=0

Bias
(
τ̂k|ra=1

)
=
(

ga
na

)
Bias

(
τ̂k|ra=1,q=1

)
+
(

ea
na

)
Bias

(
τ̂k|ra=1,q=0

)
+(

ga
na

)
ȳikbo|rb=1,q=1 −

(
gb
nb

)
ȳikbo|rb=1,q=1 +

(
ea
na

)
ȳikbo|rb=1,q=0 −

(
eb
nb

)
ȳikbo|rb=1,q=0

Bias
(
τ̂k|ra=1

)
=
(

ga
na

)
Bias

(
τ̂k|ra=1,q=1

)
+
(

ea
na

)
Bias

(
τ̂k|ra=1,q=0

)
+(

ga
na

)
ȳikbo|rb=1,q=1 −

(
gb
nb

)
ȳikbo|rb=1,q=1 +

(
1− ga

na

)
ȳikbo|rb=1,q=0 −

(
1− gb

nb

)
ȳikbo|rb=1,q=0

Bias
(
τ̂k|ra=1

)
=
(

ga
na

)
Bias

(
τ̂k|ra=1,q=1

)
+
(

ea
na

)
Bias

(
τ̂k|ra=1,q=0

)
+(

ga
na

− gb
nb

)
ȳikbo|rb=1,q=1 −

(
ga
na

− gb
nb

)
ȳikbo|rb=1,q=0

Bias
(
τ̂k|ra=1

)
=
(

ga
na

)
Bias

(
τ̂k|ra=1,q=1

)
+
(

ea
na

)
Bias

(
τ̂k|ra=1,q=0

)
+ (A11)(

ga
na

− gb
nb

) (
ȳikbo|rb=1,q=1 − ȳikbo|rb=1,q=0

)
(A12)

Therefore, we have shown that the bias in the standard estimator in the baseline model is simply the weighted average

of the bias in the estimate from a quota sample and the bias for the sub-sample that would be excluded, along with a

residual correction factor.

Quota sampling will then decrease bias if and only if

∣∣Bias
(
τ̂k|ra=1,q=1

) ∣∣ < ∣∣Bias
(
τ̂k|ra=1

) ∣∣
or (utilizing Lines A11-A12)∣∣∣∣Bias

(
τ̂k|ra=1,q=1

) ∣∣∣∣ < ∣∣∣∣ ( ga
na

)
Bias

(
τ̂k|ra=1,q=1

)
+
(

ea
na

)
Bias

(
τ̂k|ra=1,q=0

)
+(

ga
na

− gb
nb

) (
ȳikbo|rb=1,q=1 − ȳikbo|rb=1,q=0

) ∣∣∣∣
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4.3 Examples of How Quota Sampling Could Amplify Bias

We begin with a hypothetical phone survey carried out in a town before and after an important event. In Wave 1,

the survey firm was able to meet its quotas without needing to call anyone twice. However, before the end of Wave

2, the survey firm had to start redialing numbers. Without the quota constraints, the firm may have been able to

contact a sufficient number of people without making multiple attempts to reach a single individual. However, the

quota constraints in this example would lead to a Wave 2 sample with (on average) harder-to-reach individuals than

the Wave 1 sample. These harder-to-reach individuals might differ in many ways from the easier-to-reach ones, even

after conditioning on the covariates balanced through quotas. As such, quota sampling could either reduce or amplify

bias, depending on the relationship between these covariates and the potential outcomes.

We next consider a hypothetical involving an online survey. In Wave 1, the survey firm is able to meet its quotas

without an issue. However, in Wave 2, the quota constraints make it difficult for the firm to obtain a sufficiently large

sample. For this reason, the firm has to work harder, either by advertising the survey more broadly or by offering

potential respondents further incentives. This change in sampling procedures could lead to large demographic dif-

ferences between Wave 1 and Wave 2 respondents on unobservables. Whether quota sampling would increase bias

would depend on the relationship between the imbalanced factors and the potential outcomes.

5 Rolling Cross-Sections

Under this design, researchers start with a large group of individuals and randomly assign them to be asked to

complete the survey in either Wave 1 or Wave 2. Some complete the survey and others do not, sometimes because

they are never successfully contacted. We can think about our sample as including a group of always-responders who

will complete the survey if asked in either Wave 1 or Wave 2, as well as a group of sometimes-responders who would

complete the survey in either Wave 1 or Wave 2 but not both. There may also be some never-responders, but we will

put them aside for this analysis since they are inaccessible to us. Let nw denote the total number of always-responders

and sometimes-responders. Further, we can denote the number who actually complete the survey in Wave 1 as nb and

the number who actually complete the survey in Wave 2 as na. Among the nb Wave 1 respondents, we will use n∗
b

to denote the number of Wave 1 always-responders and m∗
b to denote the number of Wave 1 sometimes-responders

(who would not have completed the survey if we had tried to ask them in Wave 2). Likewise, among the na Wave

2 respondents, we will use n∗
a to denote the number of Wave 2 always-responders and m∗

a to denote the number of

Wave 2 sometimes-responders (who would not have completed the survey if we had tried to ask them in Wave 1).

We will denote the total number of respondents by n and the total number of always-responders by n∗.
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For clarity, we have these relationships:

n∗ ≤ nw

nb + na = n

n∗
b +m∗

b = nb

n∗
a +m∗

a = na

n∗
b + n∗

a = n∗

Also note that nw and n∗ are parameters that do not depend on the randomization. Meanwhile, na, nb, n∗
a, n∗

b , m∗
a,

and m∗
b are all random variables that depend on the randomization.

We can denote whether individual i is an always-responder (instead of a sometimes-responder) by ui ∈ {0, 1}.

We can also continue to denote whether an individual completed the survey in Wave 1 by rib ∈ {0, 1} and whether

they completed the survey in Wave 2 by ria ∈ {0, 1}. Further, we will let si ∈ {0, 1} denote whether individual

i is a sometimes-responder, si1 ∈ {0, 1} denote whether individual i is a sometimes-responder who would only

complete the survey in Wave 1, and si2 ∈ {0, 1} denote whether individual i is a sometimes-responder who would

only complete the survey in Wave 2. We will also let mb denote the number of sometimes-responders who would

complete the survey if they were assigned to take it in Wave 1 and ma denote the number of sometimes-responders

who would complete the survey if they were assigned to take it in Wave 2. Further, let wi ∈ {0, 1} denote whether

individual i would complete the survey in at least one of the two waves, wi1 ∈ {0, 1} denote whether individual i

would complete the survey if assigned to Wave 1, and wi2 ∈ {0, 1} denote whether individual i would complete the

survey if assigned to Wave 2. Then the number of individuals who would complete the survey if assigned to Wave

1 can be written as wb = n∗ +mb =
∑N

i wi1 and the number who would complete the survey if assigned to Wave

2 can be written as wa = n∗ + ma =
∑N

i wi2. For clarity, note that wa, wb, ma, and mb are parameters and that

n∗ +ma +mb = nw.

We might be tempted to think that the causal parameter of interest is the average treatment effect for Wave 2

respondents:

1
na

na∑
i=1

(
yikt|ra=1 − yikc|ra=1

)
.

However, this value is a random variable, not a parameter, since na is a random variable. Instead, there are two causal

parameters that we might want to estimate. The first is the average treatment effect for the always-responders from

Waves 1 and 2:
S19



τ̄k|u=1 =
1
n∗

n∗∑
i=1

(
yikt|u=1 − yikc|u=1

)

The second is the average treatment effect for the combined group of always-responders, sometimes-responders who

we sampled, and sometimes-responders who we might have sampled but did not due to the randomization:

τ̄k|w=1 =
1
nw

nw∑
i=1

(
yikt|w=1 − yikc|w=1

)

The statistic that we will use to estimate both parameters is the average difference in reported answers between the

na respondents who complete the survey in Wave 2 and the nb respondents who complete it in Wave 1.

τ̂k|u=1 = τ̂k|w=1 =
1
na

na∑
i=1

yikto|ra=1 − 1
nb

nb∑
i=1

yikbo|rb=1

5.1 Proof of Proposition 4

Proposition 4. When estimating τ̄k|u=1, the bias in τ̂k|u=1 can be written as

Bias
(
τ̂k|u=1

)
= BiasS

(
τ̂k|u=1

)
+BiasT

(
τ̂k|u=1

)
+BiasA

(
τ̂k|u=1

)
+BiasM

(
τ̂k|u=1

)
where

BiasS
(
τ̂k|u=1

)
= ma

wa

(
ȳikt|s2=1 − ȳikt|u=1

)
+ mb

wb

(
ȳikb|u=1 − ȳikb|s1=1

)
BiasT

(
τ̂k|u=1

)
= ȳikc|u=1 − ȳikbc|u=1

BiasA
(
τ̂k|u=1

)
= ȳikbc|u=1 − ȳikb|u=1

BiasM
(
τ̂k|u=1

)
= ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1

Proof. When estimating τ̄k|u=1, the bias in τ̂k|u=1 is

Bias
(
τ̂k|u=1

)
= E

[
τ̂k|u=1

]
− τ̄k|u=1

= E

[
1
na

na∑
i=1

yikto|ra=1 − 1
nb

nb∑
i=1

yikbo|rb=1

]
− 1

n∗

n∗∑
i=1

(
yikt|u=1 − yikc|u=1

)

Taking advantage of the fact that yikto = yikt + ϵikt and yikbo = yikb + ϵikb, we get
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Bias
(
τ̂k|u=1

)
= E

[
1
na

na∑
i=1

yikto|ra=1 − 1
nb

nb∑
i=1

yikbo|rb=1

]
− 1

n∗

n∗∑
i=1

(
yikt|u=1 − yikc|u=1

)
= E

[
1
na

na∑
i=1

(
yikt|ra=1 + ϵikt|ra=1

)
− 1

nb

nb∑
i=1

(
yikb|rb=1 + ϵikb|rb=1

)]
− 1

n∗

n∗∑
i=1

(
yikt|u=1 − yikc|u=1

)
= E

[
1
na

na∑
i=1

yikt|ra=1

]
+ ϵ̄ikt|w2=1 − E

[
1
nb

nb∑
i=1

yikb|rb=1

]
− ϵ̄ikb|w1=1 − 1

n∗

n∗∑
i=1

(
yikt|u=1 − yikc|u=1

)

In the last line, we utilize the fact that the na values of ϵikt|ra=1 are a random sample from the ϵikt|w2=1 values, and

likewise the nb values of ϵikb|rb=1 are a random sample from the ϵikb|w1=1 values.

We can further rewrite the overall bias term as

Bias
(
τ̂k|u=1

)
= E

[
1
na

na∑
i=1

yikt|ra=1

]
− E

[
1
nb

nb∑
i=1

yikb|rb=1

]
− 1

n∗

n∗∑
i=1

(
yikt|u=1 − yikc|u=1

)
+

ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1

= E

[
1
na

na∑
i=1

yikt|ra=1

]
− E

[
1
nb

nb∑
i=1

yikb|rb=1

]
− 1

n∗

n∗∑
i=1

yikt|u=1 +
1
n∗

n∗∑
i=1

yikc|u=1+

ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1

=

(
E

[
1
na

na∑
i=1

yikt|ra=1

]
− 1

n∗

n∗∑
i=1

yikt|u=1

)
+

(
1
n∗

n∗∑
i=1

yikc|u=1 − E

[
1
nb

nb∑
i=1

yikb|rb=1

])
+ (A13)

ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1 (A14)

We can begin by focusing on the first of the two differences in Line A13. We can break this expression down as

follows:

E

[
1
na

na∑
i=1

yikt|ra=1

]
− 1

n∗

n∗∑
i=1

yikt|u=1 = E

[
1
na

n∗
a∑

i=1

yikt|ra=1,u=1 +
1
na

m∗
a∑

i=1

yikt|ra=1,s2=1

]
− 1

n∗

n∗∑
i=1

yikt|u=1

= E

[
1
na

n∗
a∑

i=1

yikt|ra=1,u=1

]
+ E

[
1
na

m∗
a∑

i=1

yikt|ra=1,s2=1

]
− 1

n∗

n∗∑
i=1

yikt|u=1

= E

[
1
na

n∗
a∑

i=1

yikt|ra=1,u=1

]
− 1

n∗

n∗∑
i=1

yikt|u=1 + E

[
1
na

m∗
a∑

i=1

yikt|ra=1,s2=1

]
(A15)

Focusing on the first term in Line A15, note that
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E

[
1
na

n∗
a∑

i=1

yikt|ra=1,u=1

]
= E

[
n∗
a

nan∗
a

n∗
a∑

i=1

yikt|ra=1,u=1

]

= E

[
n∗
a+(na−na)

nan∗
a

n∗
a∑

i=1

yikt|ra=1,u=1

]

= E

[
n∗
a−na

nan∗
a

n∗
a∑

i=1

yikt|ra=1,u=1

]
+ E

[
na

nan∗
a

n∗
a∑

i=1

yikt|ra=1,u=1

]

= E

[
−m∗

a

nan∗
a

n∗
a∑

i=1

yikt|ra=1,u=1

]
+ E

[
1
n∗
a

n∗
a∑

i=1

yikt|ra=1,u=1

]
(A16)

The second term in Line A16 is the expected value of a random sample of n∗
a draws from the yikt|u=1 values (the yikt

of the always-responders). Therefore, it equals the mean of the yikt|u=1 values.

E

[
1
n∗
a

n∗
a∑

i=1

yikt|ra=1,u=1

]
= 1

n∗

n∗∑
i=1

yikt|u=1 (A17)

Combining Lines A13-A14, A15, A16, and A17, we get

Bias
(
τ̂k|u=1

)
=

(
E

[
−m∗

a

nan∗
a

n∗
a∑

i=1

yikt|ra=1,u=1

]
+ 1

n∗

n∗∑
i=1

yikt|u=1 − 1
n∗

n∗∑
i=1

yikt|u=1 + E

[
1
na

m∗
a∑

i=1

yikt|ra=1,s2=1

])
+(

1
n∗

n∗∑
i=1

yikc|u=1 − E

[
1
nb

nb∑
i=1

yikb|rb=1

])
+ ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1

=

(
E

[
1
na

m∗
a∑

i=1

yikt|ra=1,s2=1

]
− E

[
m∗

a

nan∗
a

n∗
a∑

i=1

yikt|ra=1,u=1

])
+ (A18)(

1
n∗

n∗∑
i=1

yikc|u=1 − E

[
1
nb

nb∑
i=1

yikb|rb=1

])
+ ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1 (A19)

We can now focus on the first difference in Line A19. We can rewrite this expression as

1
n∗

n∗∑
i=1

yikc|u=1 − E

[
1
nb

nb∑
i=1

yikb|rb=1

]
= 1

n∗

n∗∑
i=1

yikc|u=1 −

E

 1
nb

n∗
b∑

i=1

yikb|rb=1,u=1

+ E

 1
nb

m∗
b∑

i=1

yikb|rb=1,s1=1


= 1

n∗

n∗∑
i=1

yikc|u=1 − E

 1
nb

m∗
b∑

i=1

yikb|rb=1,s1=1

− E

 1
nb

n∗
b∑

i=1

yikb|rb=1,u=1


(A20)

The last term in Line A20 can be written as
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E

 1
nb

n∗
b∑

i=1

yikb|rb=1,u=1

 = E

 n∗
b

nbn
∗
b

n∗
b∑

i=1

yikb|rb=1,u=1


= E

n∗
b+(nb−nb)

nbn
∗
b

n∗
b∑

i=1

yikb|rb=1,u=1


= E

n∗
b−nb

nbn
∗
b

n∗
b∑

i=1

yikb|rb=1,u=1

+ E

 nb

nbn
∗
b

n∗
b∑

i=1

yikb|rb=1,u=1


= E

−m∗
b

nbn
∗
b

n∗
b∑

i=1

yikb|rb=1,u=1

+ E

 1
n∗
b

n∗
b∑

i=1

yikb|rb=1,u=1

 (A21)

Similar to what we did in Line A17, we can note that the second term in Line A21 is the expected value of a sample

of n∗
b draws from the yikb|u=1 values (the yikb of the always-responders). Therefore, it equals the mean of the yikb|u=1

values.

E

 1
n∗
b

n∗
b∑

i=1

yikb|rb=1,u=1

 = 1
n∗

n∗∑
i=1

yikb|u=1 (A22)

Combining Lines A18-A19, A20, A21, and A22, we get

Bias
(
τ̂k|u=1

)
=

(
E

[
1
na

m∗
a∑

i=1

yikt|ra=1,s2=1

]
− E

[
m∗

a

nan∗
a

n∗
a∑

i=1

yikt|ra=1,u=1

])
+ 1

n∗

n∗∑
i=1

yikc|u=1−

E

 1
nb

m∗
b∑

i=1

yikb|rb=1,s1=1

−

E

−m∗
b

nbn
∗
b

n∗
b∑

i=1

yikb|rb=1,u=1

+ 1
n∗

n∗∑
i=1

yikb|u=1

+

ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1

=

(
E

[
1
na

m∗
a∑

i=1

yikt|ra=1,s2=1

]
− E

[
m∗

a

nan∗
a

n∗
a∑

i=1

yikt|ra=1,u=1

])
+ (A23)

1
n∗

n∗∑
i=1

yikc|u=1 − 1
n∗

n∗∑
i=1

yikb|u=1+ (A24)E

 m∗
b

nbn
∗
b

n∗
b∑

i=1

yikb|rb=1,u=1

− E

 1
nb

m∗
b∑

i=1

yikb|rb=1,s1=1

+ ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1 (A25)

The expression in Line A24 is the average difference between the Wave 2 truthful answers of the always-responders

in the counterfactual world where the event did not happen and their Wave 1 truthful answers in the world where

the event did happen. As we did in Section 2, we can decompose this term into the bias caused by temporal factors
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between Waves 1 and 2 and the bias caused by anticipatory factors.

1
n∗

n∗∑
i=1

yikc|u=1 − 1
n∗

n∗∑
i=1

yikb|u=1 =ȳikc|u=1 − ȳikb|u=1 (A26)

=BiasT
(
τ̂k|u=1

)
+BiasA

(
τ̂k|u=1

)
(A27)

where

BiasT
(
τ̂k|u=1

)
= ȳikc|u=1 − ȳikbc|u=1 (A28)

BiasA
(
τ̂k|u=1

)
= ȳikbc|u=1 − ȳikb|u=1 (A29)

Therefore, we can write the overall bias term as

Bias
(
τ̂k|u=1

)
=

(
E

[
1
na

m∗
a∑

i=1

yikt|ra=1,s2=1

]
− E

[
m∗

a

nan∗
a

n∗
a∑

i=1

yikt|ra=1,u=1

])
+BiasT

(
τ̂k|u=1

)
+ (A30)

BiasA
(
τ̂k|u=1

)
+

E

 m∗
b

nbn
∗
b

n∗
b∑

i=1

yikb|rb=1,u=1

− E

 1
nb

m∗
b∑

i=1

yikb|rb=1,s1=1

+ (A31)

ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1 (A32)

We will start with the first difference in Line A30. Note that

E

[
1
na

m∗
a∑

i=1

yikt|ra=1,s2=1

]
− E

[
m∗

a

nan∗
a

n∗
a∑

i=1

yikt|ra=1,u=1

]
=E

[
m∗

a

na

(
1
m∗

a

m∗
a∑

i=1

yikt|ra=1,s2=1

)
− m∗

a

na

(
1
n∗
a

n∗
a∑

i=1

yikt|ra=1,u=1

)]

=E

[
m∗

a

na

(
1
m∗

a

m∗
a∑

i=1

yikt|ra=1,s2=1 − 1
n∗
a

n∗
a∑

i=1

yikt|ra=1,u=1

)]
(A33)

So the expression inside the parentheses in Line A33 is just the difference of two averages. The outside weight m∗
a

na
is

the proportion of Wave 2 respondents who are sometimes-responders. Inside the parentheses, the first average is the

mean yikt value of the Wave 2 respondents who are sometimes-responders, and the second average is the mean yikt

value of the Wave 2 respondents who are always-responders.

Therefore, the first average inside the parentheses in Line A33 is the average of a random draw of the m∗
a

sometimes-responders who would only complete the survey in Wave 2. We can use p to denote the probability

that an individual will initially be randomized to be contacted in Wave 1, making 1 − p their initial probability of
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being contacted in Wave 2. Then the expected numbers of always-responders and sometimes-responders who will

complete the survey in Wave 1 and Wave 2 are

E [n∗
b ] = pn∗

E [n∗
a] = (1− p)n∗

E [m∗
b ] = pmb

E [m∗
a] = (1− p)ma

Similarly, the expected numbers of Wave 1 and Wave 2 respondents are

E [nb] = E [n∗
b +m∗

b ] = E [n∗
b ] + E [m∗

b ] = p (n∗ +mb)

E [na] = E [n∗
a +m∗

a] = E [n∗
a] + E [m∗

a] = (1− p) (n∗ +ma)

Also, the expected proportions of sometimes-responders in Waves 1 and 2 are

E
[
m∗

b

nb

]
= mb

wb

E
[
m∗

a

na

]
= ma

wa

Returning to the expression in Line A33, the proportion of Wave 2 respondents who are sometimes-responders is

statistically independent of the mean yitk value of these sometimes-responders. Likewise, it is statistically indepen-

dent of the mean yitk value of the Wave 2 respondents who are always-responders. We therefore have

E

[
m∗

a

na

(
1
m∗

a

m∗
a∑

i=1

yikt|ra=1,s2=1 − 1
n∗
a

n∗
a∑

i=1

yikt|ra=1,u=1

)]
=E

[
m∗

a

na

]
E

[
1
m∗

a

m∗
a∑

i=1

yikt|ra=1,s2=1 − 1
n∗
a

n∗
a∑

i=1

yikt|ra=1,u=1

]

=ma

wa

(
E

[
1
m∗

a

m∗
a∑

i=1

yikt|ra=1,s2=1

]
− E

[
1
n∗
a

n∗
a∑

i=1

yikt|ra=1,u=1

])
(A34)

Inside the parentheses of Line A34, the first term is the average of m∗
a random draws from the yikt values of the

ma sometimes-responders who would only complete the survey in Wave 2. Similarly, the second term is the average

of n∗
a random draws from the yikt values of the n∗ always-responders. Therefore, we have

E

[
1
m∗

a

m∗
a∑

i=1

yikt|ra=1,s2=1

]
= 1

ma

ma∑
i=1

yikt|s2=1
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and

E

[
1
n∗
a

n∗
a∑

i=1

yikt|ra=1,u=1

]
= 1

n∗

n∗∑
i=1

yikt|u=1

We can then write

ma

wa

(
E

[
1
m∗

a

m∗
a∑

i=1

yikt|ra=1,s2=1

]
− E

[
1
n∗
a

n∗
a∑

i=1

= yikt|ra=1,u=1

])
= ma

wa

(
1
ma

ma∑
i=1

yikt|s2=1 − 1
n∗

n∗∑
i=1

yikt|u=1

)

Substituting this expression into the overall bias term, we get

Bias
(
τ̂k|u=1

)
=ma

wa

(
1
ma

ma∑
i=1

yikt|s2=1 − 1
n∗

n∗∑
i=1

yikt|u=1

)
+BiasT

(
τ̂k|u=1

)
+ (A35)

BiasA
(
τ̂k|u=1

)
+

E

 m∗
b

nbn
∗
b

n∗
b∑

i=1

yikb|rb=1,u=1

− E

 1
nb

m∗
b∑

i=1

yikb|rb=1,s1=1

+ (A36)

ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1 (A37)

We can now turn to the difference in Line A36. Similar to before, we can begin by noting that

E

 m∗
b

nbn
∗
b

n∗
b∑

i=1

yikb|rb=1,u=1

− E

 1
nb

m∗
b∑

i=1

yikb|rb=1,s1=1

 =E

m∗
b

nb

 1
n∗
b

n∗
b∑

i=1

yikb|rb=1,u=1

− m∗
b

nb

 1
m∗

b

m∗
b∑

i=1

yikb|rb=1,s1=1


=E

m∗
b

nb

 1
n∗
b

n∗
b∑

i=1

yikb|rb=1,u=1 − 1
m∗

b

m∗
b∑

i=1

yikb|rb=1,s1=1


(A38)

As in Line A33, the expression inside the parentheses in Line A38 is just the difference of two averages. The outside

weight m∗
b

nb
is the proportion of Wave 1 respondents who are sometimes-responders. Inside the parentheses, the first

average is the mean yikb value of the Wave 1 respondents who are always-responders, and the second average is

the mean yikb value of the Wave 1 respondents who are sometimes-responders. Since in this context the weight is

statistically independent of the averages, as explained earlier, we can write

E

m∗
b

nb

 1
n∗
b

n∗
b∑

i=1

yikb|rb=1,u=1 − 1
m∗

b

m∗
b∑

i=1

yikb|rb=1,s1=1

 =E
[
m∗

b

nb

]
E

 1
n∗
b

n∗
b∑

i=1

yikb|rb=1,u=1 − 1
m∗

b

m∗
b∑

i=1

yikb|rb=1,s1=1


=mb

wb

E

 1
n∗
b

n∗
b∑

i=1

yikb|rb=1,u=1

− E

 1
m∗

b

m∗
b∑

i=1

yikb|rb=1,s1=1


(A39)
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Inside the parentheses of Line A39, the first term is the average of n∗
b random draws from the yikb values of the

n∗ always-responders. Likewise, the second term is the average of m∗
b random draws from the yikb values of the mb

sometimes-responders who would only complete the survey in Wave 1. Therefore, we have

E

 1
n∗
b

n∗
b∑

i=1

yikb|rb=1,u=1

 = 1
n∗

n∗∑
i=1

yikb|u=1

and

E

 1
m∗

b

m∗
b∑

i=1

yikb|rb=1,s1=1

 = 1
mb

mb∑
i=1

yikb|s1=1

We can then write

mb

wb

E

 1
n∗
b

n∗
b∑

i=1

yikb|rb=1,u=1

− E

 1
m∗

b

m∗
b∑

i=1

yikb|rb=1,s1=1

 = mb

wb

(
1
n∗

n∗∑
i=1

yikb|u=1 − 1
mb

mb∑
i=1

yikb|s1=1

)

Substituting this expression into the overall bias term allows us to write

Bias
(
τ̂k|u=1

)
= ma

wa

(
1
ma

ma∑
i=1

yikt|s2=1 − 1
n∗

n∗∑
i=1

yikt|u=1

)
+BiasT

(
τ̂k|u=1

)
+BiasA

(
τ̂k|u=1

)
+

mb

wb

(
1
n∗

n∗∑
i=1

yikb|u=1 − 1
mb

mb∑
i=1

yikb|s1=1

)
+ ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1

= ma

wa

(
ȳikt|s2=1 − ȳikt|u=1

)
+BiasT

(
τ̂k|u=1

)
+BiasA

(
τ̂k|u=1

)
+

mb

wb

(
ȳikb|u=1 − ȳikb|s1=1

)
+ ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1

= ma

wa
(ȳikt|s2=1 − ȳikt|u=1) +

mb

wb

(
ȳikb|u=1 − ȳikb|s1=1

)
+ (A40)

BiasT
(
τ̂k|u=1

)
+BiasA

(
τ̂k|u=1

)
+ ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1 (A41)

The first expression in Line A40 is the proportion of possible Wave 2 respondents who are sometimes-responders

multiplied by the average difference between these sometimes-responders’ yikt values and the always-responders’

yikt values. The second expression in Line A40 is the proportion of possible Wave 1 respondents who are sometimes-

responders multiplied by the average difference between the always-responders’ yikb values and these potential Wave

1 sometimes-responders’ yikb values. Therefore, we can think of the sum of these two expressions as the bias caused

by having sometimes-responders in the Wave 1 and Wave 2 samples.

BiasS
(
τ̂k|u=1

)
= ma

wa

(
ȳikt|s2=1 − ȳikt|u=1

)
+ mb

wb

(
ȳikb|u=1 − ȳikb|s1=1

)
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We now have

Bias
(
τ̂k|u=1

)
= BiasS

(
τ̂k|u=1

)
+BiasT

(
τ̂k|u=1

)
+BiasA

(
τ̂k|u=1

)
+ ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1 (A42)

The expression ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1 is the potential bias caused by differential misreporting in the answers of the

possible Wave 1 and Wave 2 respondents. We can define it as

BiasM
(
τ̂k|u=1

)
= ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1

In sum, we can write the overall bias as

Bias
(
τ̂k|u=1

)
= BiasS

(
τ̂k|u=1

)
+BiasT

(
τ̂k|u=1

)
+BiasA

(
τ̂k|u=1

)
+BiasM

(
τ̂k|u=1

)
(A43)

where

BiasS
(
τ̂k|u=1

)
= ma

wa

(
ȳikt|s2=1 − ȳikt|u=1

)
+ mb

wb

(
ȳikb|u=1 − ȳikb|s1=1

)
BiasT

(
τ̂k|u=1

)
= ȳikc|u=1 − ȳikbc|u=1

BiasA
(
τ̂k|u=1

)
= ȳikbc|u=1 − ȳikb|u=1

BiasM
(
τ̂k|u=1

)
= ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1

5.2 Deriving the Bias When Estimating τ̄k|w=1

Begin by recalling that the average treatment effect of the combined group of always-responders, sometimes-responders

who we sampled, and sometimes-responders who we might have sampled but did not due to the randomization is

written as

τ̄k|w=1 =
1
nw

nw∑
i=1

(
yikt|w=1 − yikc|w=1

)
(A44)

To estimate this parameter, we will use the same estimator as before: the average difference in reported outcomes

between the na respondents who complete the survey in Wave 2 and the nb respondents who complete it in Wave 1.

τ̂k|w=1 =
1
na

na∑
i=1

yikto|ra=1 − 1
nb

nb∑
i=1

yikbo|rb=1

The bias in this estimator is therefore
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Bias
(
τ̂k|w=1

)
= E

[
τ̂k|w=1

]
− τ̄k|w=1

= E

[
1
na

na∑
i=1

yikto|ra=1 − 1
nb

nb∑
i=1

yikbo|rb=1

]
− 1

nw

nw∑
i=1

(
yikt|w=1 − yikc|w=1

)
= E

[
1
na

na∑
i=1

(
yikt|ra=1 + ϵikt|ra=1

)
− 1

nb

nb∑
i=1

(
yikb|rb=1 + ϵikb|rb=1

)]
− 1

nw

nw∑
i=1

(yikt − yikc)

= E

[
1
na

na∑
i=1

yikt|ra=1

]
+ ϵ̄ikt|w2=1 − E

[
1
nb

nb∑
i=1

yikb|rb=1

]
− ϵ̄ikb|w1=1 − 1

nw

nw∑
i=1

(
yikt|w=1 − yikc|w=1

)
= E

[
1
na

na∑
i=1

yikt|ra=1

]
− E

[
1
nb

nb∑
i=1

yikb|rb=1

]
− 1

nw

nw∑
i=1

yikt|w=1 +
1
nw

nw∑
i=1

yikc|w=1 + ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1

=

(
E

[
1
na

na∑
i=1

yikt|ra=1

]
− 1

nw

nw∑
i=1

yikt|w=1

)
+

(
1
nw

nw∑
i=1

yikc|w=1 − E

[
1
nb

nb∑
i=1

yikb|rb=1

])
+ (A45)

ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1 (A46)

Note that, as before, wi1 ∈ {0, 1} denotes whether an individual would complete the survey if assigned to Wave

1 and wi2 ∈ {0, 1} denotes whether they would complete the survey if assigned to Wave 2. Similarly, wi ∈ {0, 1}

denotes whether individual i would complete the survey in at least one of the two waves. Likewise, wb = n∗ +mb

denotes the number of individuals who would complete the survey if asked to do it in Wave 1, and wa = n∗ + ma

denotes the number of individuals who would complete the survey if asked to do it in Wave 2. Focusing on the first

difference in Line A45, we can rewrite the expression as

E

[
1
na

na∑
i=1

yikt|ra=1

]
− 1

nw

nw∑
i=1

yikt|w=1 =
1
wa

wa∑
i=1

yikt|w2=1 − 1
nw

nw∑
i=1

yikt|w=1

= ȳikt|w2=1 − ȳikt|w=1 (A47)

Similarly, the second difference in Line A45 can be rewritten as

1
nw

nw∑
i=1

yikc|w=1 − E

[
1
nb

nb∑
i=1

yikb|rb=1

]
= 1

nw

nw∑
i=1

yikc|w=1 − 1
wb

wb∑
i=1

yikb|w1=1

= 1
nw

nw∑
i=1

yikc|w=1 − 1
wb

wb∑
i=1

yikb|w1=1 +
1
nw

ma∑
i=1

yikb|s2=1 − 1
nw

ma∑
i=1

yikb|s2=1

= 1
nw

nw∑
i=1

yikc|w=1 −

(
1
wb

wb∑
i=1

yikb|w1=1 +
1
nw

ma∑
i=1

yikb|s2=1

)
+ (A48)

1
nw

ma∑
i=1

yikb|s2=1 (A49)
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We can rewrite the expression inside the parentheses in Line A48 as

1
wb

wb∑
i=1

yikb|w1=1 +
1
nw

ma∑
i=1

yikb|s2=1 =
nw

wbnw

wb∑
i=1

yikb|w1=1 +
1
nw

ma∑
i=1

yikb|s2=1

=nw+(wb−wb)
wbnw

wb∑
i=1

yikb|w1=1 +
1
nw

ma∑
i=1

yikb|s2=1

=nw−wb

wbnw

wb∑
i=1

yikb|w1=1 +
wb

wbnw

wb∑
i=1

yikb|w1=1 +
1
nw

ma∑
i=1

yikb|s2=1

=nw−wb

wbnw

wb∑
i=1

yikb|w1=1 +
1
nw

wb∑
i=1

yikb|w1=1 +
1
nw

ma∑
i=1

yikb|s2=1

=nw−wb

wbnw

wb∑
i=1

yikb|w1=1 +
1
nw

nw∑
i=1

yikb|w=1

Combining Lines A47, A48-A49, and A50, we get

Bias
(
τ̂k|w=1

)
= ȳikt|w2=1 − ȳikt|w=1 +

1
nw

nw∑
i=1

yikc|w=1 −

(
nw−wb

wbnw

wb∑
i=1

yikb|w1=1 +
1
nw

nw∑
i=1

yikb|w=1

)
+ 1

nw

ma∑
i=1

yikb|s2=1+

ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1

=
(
ȳikt|w2=1 − ȳikt|w=1

)
+

(
1
nw

nw∑
i=1

yikc|w=1 − 1
nw

nw∑
i=1

yikb|w=1

)
+ wb−nw

wbnw

wb∑
i=1

yikb|w1=1 +
1
nw

ma∑
i=1

yikb|s2=1+

ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1

=
(
ȳikt|w2=1 − ȳikt|w=1

)
+
(
ȳikc|w=1 − ȳikb|w=1

)
+ wb−nw

wbnw

wb∑
i=1

yikb|w1=1 +
1
nw

ma∑
i=1

yikb|s2=1+

ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1

Similar to our discussion in Section 2 of the article, this difference ȳikc|w=1 − ȳikb|w=1 can be decomposed into

the bias from temporal factors and the bias from anticipatory factors. Thus, we can write

ȳikc|w=1 − ȳikb|w=1 = BiasT
(
τ̂k|w=1

)
+BiasA

(
τ̂k|w=1

)

where

BiasT
(
τ̂k|w=1

)
= ȳikc|w=1 − ȳikbc|w=1

BiasA
(
τ̂k|w=1

)
= ȳikbc|w=1 − ȳikb|w=1

We can now write the overall bias term as:
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Bias
(
τ̂k|w=1

)
=
(
ȳikt|w2=1 − ȳikt|w=1

)
+BiasT

(
τ̂k|w=1

)
+BiasA

(
τ̂k|w=1

)
+ (A50)(

wb−nw

wbnw

wb∑
i=1

yikb|w1=1 +
1
nw

ma∑
i=1

yikb|s2=1

)
+ ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1 (A51)

The first difference in Line A51 can be written as

wb−nw

wbnw

wb∑
i=1

yikb|w1=1 +
1
nw

ma∑
i=1

yikb|s2=1 =
1
nw

wb∑
i=1

yikb|w1=1 − 1
wb

wb∑
i=1

yikb|w1=1 +
1
nw

ma∑
i=1

yikb|s2=1

= 1
nw

wb∑
i=1

yikb|w1=1 +
1
nw

ma∑
i=1

yikb|s2=1 − 1
wb

wb∑
i=1

yikb|w1=1

= 1
nw

nw∑
i=1

yikb|w=1 − 1
wb

wb∑
i=1

yikb|w1=1

= ȳikb|w=1 − ȳikb|w1=1

We can now write the overall bias term as

Bias
(
τ̂k|w=1

)
=
(
ȳikt|w2=1 − ȳikt|w=1

)
+BiasT

(
τ̂k|w=1

)
+BiasA

(
τ̂k|w=1

)
+
(
ȳikb|w=1 − ȳikb|w1=1

)
+

ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1

=
(
ȳikt|w2=1 − ȳikt|w=1

)
+
(
ȳikb|w=1 − ȳikb|w1=1

)
+BiasT

(
τ̂k|w=1

)
+BiasA

(
τ̂k|w=1

)
+ (A52)

ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1 (A53)

The differences within the two sets of parentheses in Line A52 come from not being able to see any yikto values for

the Wave 1 sometimes-responders nor any of the yikbo values for the Wave 2 sometimes-responders. We can think of

this bias as arising from having sometimes-responders in our sample who differ in systematic ways from the always-

responders and the sometimes-responders who answer the survey in the other wave. We can rewrite this bias term

as

(
ȳikt|w2=1 − ȳikb|w1=1

)
−
(
ȳikt|w=1 − ȳikb|w=1

)
=
(
ȳikt|w2=1 − ȳikb|w1=1

)
−
(

wa

nw

)
ȳikt|w2=1 −

(
mb

nw

)
ȳikt|s1=1+

(A54)(
wb

nw

)
ȳikb|w1=1 +

(
ma

nw

)
ȳikb|s2=1 (A55)

= mb

nw

(
ȳikt|w2=1 − ȳikt|s1=1

)
+ ma

nw

(
ȳikb|s2=1 − ȳikb|w1=1

)
(A56)
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We can label this bias

BiasS
(
τ̂k|w=1

)
= mb

nw

(
ȳikt|w2=1 − ȳikt|s1=1

)
+ ma

nw

(
ȳikb|s2=1 − ȳikb|w1=1

)

We can now write the overall bias term as

Bias
(
τ̂k|w=1

)
= BiasS

(
τ̂k|w=1

)
+BiasT

(
τ̂k|w=1

)
+BiasA

(
τ̂k|w=1

)
+ ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1

As in the previous proof, ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1 is the potential bias caused by differential misreporting in the answers

of the possible Wave 1 and Wave 2 respondents. We can define it as

BiasM
(
τ̂k|w=1

)
= ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1

In sum, we can write the overall bias as

Bias
(
τ̂k|w=1

)
= BiasS

(
τ̂k|w=1

)
+BiasT

(
τ̂k|w=1

)
+BiasA

(
τ̂k|w=1

)
+BiasM

(
τ̂k|w=1

)
(A57)

where

BiasS
(
τ̂k|w=1

)
= mb

nw

(
ȳikt|w2=1 − ȳikt|s1=1

)
+ ma

nw

(
ȳikb|s2=1 − ȳikb|w1=1

)
BiasT

(
τ̂k|w=1

)
= ȳikc|w=1 − ȳikbc|w=1

BiasA
(
τ̂k|w=1

)
= ȳikbc|w=1 − ȳikb|w=1

BiasM
(
τ̂k|w=1

)
= ϵ̄ikt|w2=1 − ϵ̄ikb|w1=1

5.3 Comparing Bias in the Rolling Cross-Section Design to Bias in the Baseline Model

Before proceeding, we can consider the special case where there are no always-responders. We can think of this

scenario as the baseline model but when the parameter that we are estimating is the average treatment effect for all

Wave 1 and Wave 2 respondents. The BiasS
(
τ̂k|w=1

)
term becomes a weighted average of the pre-event and post-

event differences between the Wave 1 and Wave 2 respondents’ truthful answers. Clearly, bias when estimating the

average treatment effect for Wave 2 respondents in the baseline model is more straightforward to comprehend than

bias when estimating the average treatment effect for both Wave 1 and Wave 2 respondents.

We can now examine how the bias in the estimators τ̂k|u=1 and τ̂k|w=1 from the rolling cross-section design
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compare to the bias in the baseline model from the article. The rolling cross-section design trades the bias in demo-

graphic differences between Wave 1 and Wave 2 respondents for the bias caused by sometimes-responders. Focusing

on Equation A43, we can better understand BiasS
(
τ̂k|u=1

)
by considering the special case where the initial numbers

of sometimes-responders in Waves 1 and 2 are the same (ma = mb). In that case, ma

wa
= mb

wb
, which we will denote as

α ≤ 1. This symmetry allows us to rewrite BiasS
(
τ̂k|u=1

)
as

BiasS
(
τ̂k|u=1|ma = mb

)
= ma

wa

(
ȳikt|s2=1 − ȳikt|u=1

)
+ mb

wb

(
ȳikb|u=1 − ȳikb|s1=1

)
= α

(
ȳikt|s2=1 − ȳikt|u=1

)
+ α

(
ȳikb|u=1 − ȳikb|s1=1

)
= α

(
ȳikt|s2=1 − ȳikb|s1=1 − ȳikt|u=1 + ȳikb|u=1

)
= α

[(
ȳikt|s2=1 − ȳikb|s1=1

)
−
(
ȳikt|u=1 − ȳikb|u=1

)]
(A58)

Note that the terms inside both sets of parentheses in Line A58 resemble our estimator in the baseline model of

Section 2 of the article. In fact, they are equivalent to that estimator in the special case where there is no measurement

error. The first term is simply the standard estimator τ̂k|ra=1 without measurement error on a sample consisting

entirely of sometimes-responders. The second term is the same estimator on a sample consisting entirely of always-

responders, except in a world where the Wave 1 and Wave 2 individuals are identical on demographic characteristics.

Since there is no randomness in the baseline model, we can think of both estimators as the average treatment effect

for that sub-sample combined with the corresponding bias term, following from the equation Bias (τ̂) = E [τ̂ ]− τ̄ .

We can therefore write

BiasS
(
τ̂k|u=1|ma = mb

)
= α

[ (
τ̄k|s2=1 +BiasX

(
τ̂k|s2=1

)
+BiasT

(
τ̂k|s2=1

)
+BiasA

(
τ̂k|s2=1

))
−(

τ̄k|u=1 +BiasX
(
τ̂k|u=1

)
+BiasT

(
τ̂k|u=1

)
+BiasA

(
τ̂k|u=1

)) ]
= α

[ (
τ̄k|s2=1 +BiasX

(
τ̂k|s2=1

)
+BiasT

(
τ̂k|s2=1

)
+BiasA

(
τ̂k|s2=1

))
−(

τ̄k|u=1 +BiasT
(
τ̂k|u=1

)
+BiasA

(
τ̂k|u=1

)) ]

Substituting this expression into Equation A43, we obtain

Bias
(
τ̂k|u=1|ma = mb

)
= αBiasX

(
τ̂k|s2=1

)
+
(
αBiasT

(
τ̂k|s2=1

)
+ (1− α)BiasT

(
τ̂k|u=1

))
+ (A59)(

αBiasA
(
τ̂k|s2=1

)
+ (1− α)BiasA

(
τ̂k|u=1

))
+BiasM

(
τ̂k|u=1

)
+ (A60)

α
(
τ̄k|s2=1 − τ̄k|u=1

)
(A61)

The expression involving bias from temporal factors is just a weighted average of the temporal bias for the sometimes-
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responders and always-responders. The same logic holds for the expression involving the bias from anticipatory

factors. We also add a new bias term involving the difference in average treatment effect between the sometimes-

responders and always-responders.

In sum, the rolling cross section estimator reduces demographic bias, but it also complicates the rest of the overall

bias term in ways that could either decrease or enlarge the total bias in this design.

If we instead use Equation A57 and consider the special case where the initial numbers of possible Wave 1 and

Wave 2 sometimes-responders are the same (ma = mb), then the weights we obtain ma

nw
and mb

nw
will be equal. In this

situation, we can define λ = ma

nw
= mb

nw
. We can then rewrite the equation for BiasS

(
τ̂k|w=1|ma = mb

)
as

BiasS
(
τ̂k|w=1|ma = mb

)
=
(
ȳikt|w2=1 − ȳikb|w1=1

)
−
(
ȳikt|w=1 − ȳikb|w=1

)
Here we are utilizing the way that we wrote BiasS(τ̂k|w=1) at the beginning of Line A54.

This expression is very similar to what we saw in Line A58. As before, we can think about each of the two

differences inside the brackets as mathematically similar to the estimator from the baseline model, specifically in

the case where there is no measurement error. Also as before, we can think of these two estimators as the average

treatment effect for that sample combined with the corresponding bias term. We can therefore write

BiasS
(
τ̂k|w=1|ma = mb

)
=
(
τ̄k|w2=1 +BiasX

(
τ̂k|w2=1

)
+BiasT

(
τ̂k|w2=1

)
+BiasA

(
τ̂k|w2=1

))
− (A62)(

τ̄k|w=1 +BiasX
(
τ̂k|w=1

)
+BiasT

(
τ̂k|w=1

)
+BiasA

(
τ̂k|w=1

))
(A63)

Note that in Line A62, BiasX
(
τ̂k|w2=1

)
= ȳikb|w2=1 − ȳikb|w1=1. Since the pre-event and post-event samples in Line

A63 consist of nw individuals with exactly the same demographic characteristics, we can drop the BiasX(τ̂k|w=1)

term.

BiasS
(
τ̂k|w=1|ma = mb

)
=
(
τ̄k|w2=1 +BiasX

(
τ̂k|w2=1

)
+BiasT

(
τ̂k|w2=1

)
+BiasA

(
τ̂k|w2=1

))
−(

τ̄k|w=1 +BiasT
(
τ̂k|w=1

)
+BiasA

(
τ̂k|w=1

))

Substituting this expression into Line A57, we get

Bias
(
τ̂k|w=1|ma = mb

)
= BiasX

(
τ̂k|w2=1

)
+BiasT

(
τ̂k|w2=1

)
+BiasA

(
τ̂k|w2=1

)
+BiasM

(
τ̂k|w=1

)
+(

τ̄k|w2=1 − τ̄k|w=1

)
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Note that this equation can be rewritten as

Bias
(
τ̂k|w=1|ma = mb

)
= αBiasX

(
τ̂k|s2=1

)
+ αBiasT

(
τ̂k|s2=1

)
+ (1− α)BiasT

(
τ̂k|u=1

)
+

αBiasA
(
τ̂k|s2=1

)
+ (1− α)BiasA

(
τ̂k|u=1

)
+BiasM

(
τ̂k|w=1

)
+(

τ̄k|w2=1 − τ̄k|w=1

)
which is very similar to the expression we derived for Bias

(
τ̂k|u=1|ma = mb

)
.

6 Panel Designs

In a panel design, we begin with a group of individuals who have the opportunity to take the same survey in Wave 1

and Wave 2. We can denote whether individual i takes the survey in both waves by ui ∈ {0, 1} and the total number

of respondents who take the survey in both waves as n∗. The causal parameter we estimate is the average treatment

effect of the event on these n∗ respondents’ truthful answers to question k of the survey:

τ̄k|u=1 =
1
n∗

n∗∑
i=1

(
yikt|u=1 − yikc|u=1

)
In the above line, we consider yikt|u=1 to be individual i’s truthful answer in the world where they did not complete

the survey in Wave 1. We can distinguish this value from yika|u=1, which we use to denote individual i’s truthful

answer in the world where they did complete the survey in Wave 1.

The statistic we use to estimate τ̄k|u=1 is

τ̂k|u=1 =
1
n∗

n∗∑
i=1

yikao|u=1 − 1
n∗

n∗∑
i=1

yikbo|u=1

In the above line, we use yikao|u=1 to denote individual i’s reported answer in Wave 2 after having already completed

the survey in Wave 1.

6.1 Proof of Proposition 5

Proposition 5. Bias in the panel design can be written as

Bias
(
τ̂k|u=1

)
= BiasC

(
τ̂k|u=1

)
+BiasT

(
τ̂k|u=1

)
+BiasA

(
τ̂k|u=1

)
+BiasM

(
τ̂k|u=1

)
where
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BiasC
(
τ̂k|u=1

)
= ȳika|u=1 − ȳikt|u=1

BiasT
(
τ̂k|u=1

)
= ȳikc|u=1 − ȳikbc|u=1

BiasA
(
τ̂k|u=1

)
= ȳikbc|u=1 − ȳikb|u=1

BiasM
(
τ̂k|u=1

)
= ϵ̄ka|u=1 − ϵ̄kb|u=1

Proof. The bias in τ̂k|u=1 is just

Bias
(
τ̂k|u=1

)
= E

[
τ̂k|u=1

]
− τ̄k|u=1

= E

[
1
n∗

n∗∑
i=1

yikao|u=1 − 1
n∗

n∗∑
i=1

yikbo|u=1

]
− 1

n∗

n∗∑
i=1

(
yikt|u=1 − yikc|u=1

)
= 1

n∗

n∗∑
i=1

yikao|u=1 − 1
n∗

n∗∑
i=1

yikbo|u=1 − 1
n∗

n∗∑
i=1

yikt|u=1 +
1
n∗

n∗∑
i=1

yikc|u=1

= 1
n∗

n∗∑
i=1

yika|u=1 − 1
n∗

n∗∑
i=1

yikb|u=1 − 1
n∗

n∗∑
i=1

yikt|u=1 +
1
n∗

n∗∑
i=1

yikc|u=1 + ϵ̄ka|u=1 − ϵ̄kb|u=1

=

(
1
n∗

n∗∑
i=1

yika|u=1 − 1
n∗

n∗∑
i=1

yikt|u=1

)
+

(
1
n∗

n∗∑
i=1

yikc|u=1 − 1
n∗

n∗∑
i=1

yikb|u=1

)
+ ϵ̄ka|u=1 − ϵ̄kb|u=1

(A64)

The first difference in Line A64 can be thought of as the average difference between the n∗ always-responders’ Wave

2 truthful answers in the world where they completed the survey in Wave 1 and the world where they did not. In

other words, it is the average causal effect of completing the survey in Wave 1 on always-responders’ true answers in

Wave 2, commonly known as conditioning effects. We denote this bias as

BiasC
(
τ̂k|u=1

)
= 1

n∗

n∗∑
i=1

yika|u=1 − 1
n∗

n∗∑
i=1

yikt|u=1 = ȳika|u=1 − ȳikt|u=1 (A65)

Returning to Line A64, the second difference is similar to what we saw in Equation 5 from Section 2 of the

article. Following what we did in Section 2, we can decompose this expression into bias from temporal factors and

bias from anticipatory factors:

1
n∗

n∗∑
i=1

yikc|u=1 − 1
n∗

n∗∑
i=1

yikb|u=1 = BiasT
(
τ̂k|u=1

)
+BiasA

(
τ̂k|u=1

)
(A66)

where
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BiasT
(
τ̂k|u=1

)
= 1

n∗

n∗∑
i=1

yikc|u=1 − 1
n∗

n∗∑
i=1

yikbc|u=1 = ȳikc|u=1 − ȳikbc|u=1 (A67)

BiasA
(
τ̂k|u=1

)
= 1

n∗

n∗∑
i=1

yikbc|u=1 − 1
n∗

n∗∑
i=1

yikb|u=1 = ȳikbc|u=1 − ȳikb|u=1 (A68)

Finally, the last difference in Line A64 is just the potential difference in misreporting between Waves 1 and 2.

BiasM
(
τ̂k|u=1

)
= ϵ̄ka|u=1 − ϵ̄kb|u=1 (A69)

In sum, we can write the bias in the panel design as

Bias
(
τ̂k|u=1

)
= BiasC

(
τ̂k|u=1

)
+BiasT

(
τ̂k|u=1

)
+BiasA

(
τ̂k|u=1

)
+BiasM

(
τ̂k|u=1

)
(A70)

where

BiasC
(
τ̂k|u=1

)
= ȳika|u=1 − ȳikt|u=1 (A71)

BiasT
(
τ̂k|u=1

)
= ȳikc|u=1 − ȳikbc|u=1 (A72)

BiasA
(
τ̂k|u=1

)
= ȳikbc|u=1 − ȳikb|u=1 (A73)

BiasM
(
τ̂k|u=1

)
= ϵ̄ka|u=1 − ϵ̄kb|u=1 (A74)

7 Dual Randomized Survey (DRS) Design

In the DRS design, we have n individuals who complete both surveys. We will let na denote the number of individuals

who complete Survey A in Wave 2 and nb denote the number of individuals who complete Survey A in Wave 1, such

that na + nb = n. Due to the possibility of differential attrition, we can think of our sample as consisting of

“always-responders” who would complete both surveys no matter which survey they were assigned to do first and

“sometimes-responders” whose participation in Wave 2 depends on which survey they receive in Wave 1. We will

denote the number of always-responders by n∗, the number of sometimes-responders who would only complete both

surveys if assigned to do Survey A in Wave 2 by ma, and the number of sometimes-responders who would only

complete both surveys if assigned to do Survey A in Wave 1 by mb. We will also let wa denote the total possible

number of individuals who would complete both surveys if assigned to do Survey A in Wave 2 and wb denote the
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total possible number of individuals who would complete both surveys if assigned to do Survey A in Wave 1, such

that wa = n∗ +ma and wb = n∗ +mb. We will use ria ∈ {0, 1} to denote whether individual i completed Survey A

after the event and rib ∈ {0, 1} to denote whether individual i completed Survey A before the event. As before, we

will use ui ∈ {0, 1} to denote whether individual i is an always-responder. We will also use wi1 ∈ {0, 1} to denote

whether individual i would complete both surveys if assigned to do Survey A in Wave 1 and wi2 ∈ {0, 1} to denote

whether individual i would complete both surveys if assigned to do Survey A in Wave 2.

We will think of each of the individuals in our sample as having a Wave 1 truthful answer (yikb), a Wave 1 reported

answer (yikbo), a Wave 2 truthful answer in the world where they did not complete Survey B in Wave 1 (yikt), a Wave

1 truthful answer in the hypothetical world where the event did not happen (yikc), a Wave 2 truthful answer after

having completed Survey B in Wave 1 (yika), and a Wave 2 reported answer after having completed Survey B in

Wave 1 (yikao).

7.1 Proof of Proposition 6

Proposition 6. Bias in the DRS design can be written as

Bias
(
τ̂k|u=1

)
= BiasD

(
τ̂k|u=1

)
+BiasP

(
τ̂k|u=1

)
+BiasT

(
τ̂k|u=1

)
+BiasA

(
τ̂k|u=1

)
+BiasM

(
τ̂k|u=1

)
where

BiasD
(
τ̂k|u=1

)
= ma

wa

(
ȳika|s2=1 − ȳika|u=1

)
+ mb

wb

(
ȳikb|u=1 − ȳikb|s1=1

)
BiasP

(
τ̂k|u=1

)
= ȳika|u=1 − ȳikt|u=1

BiasT
(
τ̂k|u=1

)
= ȳikc|u=1 − ȳikbc|u=1

BiasA
(
τ̂k|u=1

)
= ȳikbc|u=1 − ȳikb|u=1

BiasM
(
τ̂k|u=1

)
= ϵ̄ika|w2=1 − ϵ̄ikb|w1=1

Proof. The causal parameter we are interested in estimating is the average causal effect of the event on the truthful

responses to question k of the n∗ always-responders:

τ̄k|u=1 =
1
n∗

n∗∑
i=1

(
yikt|u=1 − yikc|u=1

)
The statistic that we use to estimate this parameter is just
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τ̂k|u=1 =
1
na

na∑
i=1

yikao|ra=1 − 1
nb

nb∑
i=1

yikbo|rb=1

The bias in this estimator is then

Bias
(
τ̂k|u=1

)
= E

[
τ̂k|u=1

]
− τ̄k|u=1

= E

[
1
na

na∑
i=1

yikao|ra=1 − 1
nb

nb∑
i=1

yikbo|rb=1

]
− 1

n∗

n∗∑
i=1

(
yikt|u=1 − yikc|u=1

)
= E

[
1
na

na∑
i=1

yika|ra=1 − 1
nb

nb∑
i=1

yikb|rb=1

]
− 1

n∗

n∗∑
i=1

(
yikt|u=1 − yikc|u=1

)
+ ϵ̄ika|w2=1 − ϵ̄ikb|w1=1

= E

[
1
na

na∑
i=1

yika|ra=1

]
− E

[
1
nb

nb∑
i=1

yikb|rb=1

]
− 1

n∗

n∗∑
i=1

(
yikt|u=1 − yikc|u=1

)
+ ϵ̄ika|w2=1 − ϵ̄ikb|w1=1

= 1
wa

wa∑
i=1

yika|w2=1 − 1
wb

wb∑
i=1

yikb|rb=1 − 1
n∗

n∗∑
i=1

(
yikt|u=1 − yikc|u=1

)
+ ϵ̄ika|w2=1 − ϵ̄ikb|w1=1

= 1
wa

wa∑
i=1

yika|w2=1 − 1
n∗

n∗∑
i=1

yikt|u=1 +

(
1
n∗

n∗∑
i=1

yikc|u=1 − 1
wb

wb∑
i=1

yikb|w1=1

)
+ ϵ̄ika|w2=1 − ϵ̄ikb|w1=1

= 1
wa

wa∑
i=1

yika|w2=1 − ȳikt|u=1 +

(
ȳikc|u=1 − 1

wb

wb∑
i=1

yikb|w1=1

)
+ ϵ̄ika|w2=1 − ϵ̄ikb|w1=1 (A75)

We can expand the first term in the above line as follows:

1
wa

wa∑
i=1

yika|w2=1 =
1
wa

ma∑
i=1

yika|s2=1 +
1
wa

n∗∑
i=1

yika|u=1 (A76)

Note that the second term in this expression can be rewritten as:

1
wa

n∗∑
i=1

yika|u=1 =
n∗

wan∗

n∗∑
i=1

yika|u=1

= n∗+(wa−wa)
wan∗

n∗∑
i=1

yika|u=1

= n∗−wa

wan∗

n∗∑
i=1

yika|u=1 +
wa

wan∗

n∗∑
i=1

yika|u=1

= −ma

wan∗

n∗∑
i=1

yika|u=1 +
1
n∗

n∗∑
i=1

yika|u=1

= − ma

wan∗

n∗∑
i=1

yika|u=1 + ȳika|u=1 (A77)

We can then use Lines A76 and A77 to rewrite the overall bias term in Line A75 as
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Bias
(
τ̂k|u=1

)
= 1

wa

ma∑
i=1

yika|s2=1 − ma

wan∗

n∗∑
i=1

yika|u=1 + ȳika|u=1 − ȳikt|u=1+ (A78)(
ȳikc|u=1 − 1

wb

wb∑
i=1

yikb|w1=1

)
+ ϵ̄ika|w2=1 − ϵ̄ikb|w1=1 (A79)

The second difference in Line A81 can be rewritten as simply the average difference between the n∗ always-

responders’ truthful answers to question k in the world where they completed Survey B in Wave 1 and in the world

where they did not. In other words, it is the average causal effect of completing Survey B in Wave 1 on the always-

responders’ Wave 2 truthful answers. We can think of this possible difference as a potential type of priming bias:

BiasP
(
τ̂k|u=1

)
= 1

n∗

n∗∑
i=1

yika|u=1 − 1
n∗

n∗∑
i=1

yikt|u=1 = ȳika|u=1 − ȳikt|u=1 (A80)

Therefore, we can rewrite the overall bias as

Bias
(
τ̂k|u=1

)
= 1

wa

ma∑
i=1

yika|s2=1 − ma

wan∗

n∗∑
i=1

yika|u=1 +BiasP
(
τ̂k|u=1

)
+ (A81)(

ȳikc|u=1 − 1
wb

wb∑
i=1

yikb|w1=1

)
+ ϵ̄ika|w2=1 − ϵ̄ikb|w1=1 (A82)

We can now turn our attention to the first difference in Line A82. We can begin by noting that

1
wb

wb∑
i=1

yikb|w1=1 =
1
wb

mb∑
i=1

yikb|s1=1 +
1
wb

n∗∑
i=1

yikb|u=1 (A83)

We can break the second term down further as

1
n∗

n∗∑
i=1

yikb|u=1 =
n∗

wbn∗

n∗∑
i=1

yikb|u=1

= n∗+(wb−wb)
wbn∗

n∗∑
i=1

yikb|u=1

= n∗−wb

wbn∗

n∗∑
i=1

yikb|u=1 +
wb

wbn∗

n∗∑
i=1

yikb|u=1

= −mb

wbn∗

n∗∑
i=1

yikb|u=1 +
1
n∗

n∗∑
i=1

yikb|u=1

= − mb

wbn∗

n∗∑
i=1

yikb|u=1 + ȳikb|u=1

= ȳikb|u=1 − mb

wbn∗

n∗∑
i=1

yikb|u=1 (A84)
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Using Lines A83 and A84, we can now rewrite the overall bias term from Lines A81-A82 as

Bias
(
τ̂k|u=1

)
= 1

wa

ma∑
i=1

yika|s2=1 − ma

wan∗

n∗∑
i=1

yika|u=1 +BiasP
(
τ̂k|u=1

)
+

ȳikc|u=1 −

(
1
wb

mb∑
i=1

yikb|s1=1 + ȳikb|u=1 − mb

wbn∗

n∗∑
i=1

yikb|u=1

)
+ ϵ̄ika|w2=1 − ϵ̄ikb|w1=1

= 1
wa

ma∑
i=1

yika|s2=1 − ma

wan∗

n∗∑
i=1

yika|u=1 +BiasP
(
τ̂k|u=1

)
+

(
ȳikc|u=1 − ȳikb|u=1

)
+ mb

wbn∗

n∗∑
i=1

yikb|u=1 − 1
wb

mb∑
i=1

yikb|s1=1 + ϵ̄ika|w2=1 − ϵ̄ikb|w1=1

Similar to what we did in Section 2 of the article, we can separate the expression ȳikc|u=1 − ȳikb|u=1 into the bias

caused by temporal factors and the bias caused by anticipatory factors:

ȳikc|u=1 − ȳikb|u=1 = BiasT
(
τ̂k|u=1

)
+BiasA

(
τ̂k|u=1

)
where

BiasT
(
τ̂k|u=1

)
= 1

n∗

n∗∑
i=1

yikc|u=1 − 1
n∗

n∗∑
i=1

yikbc|u=1 = ȳikc|u=1 − ȳikbc|u=1

BiasA
(
τ̂k|u=1

)
= 1

n∗

n∗∑
i=1

yikbc|u=1 − 1
n∗

n∗∑
i=1

yikb|u=1 = ȳikbc|u=1 − ȳikb|u=1

As in Section 2, the term yikbc represents individual i’s Wave 1 truthful response in the counterfactual world where

the event “did not happen.” Interpretation of this term depends on the counterfactual that the researcher has in mind.

The overall bias in the estimator can now be written as

Bias
(
τ̂k|u=1

)
= 1

wa

ma∑
i=1

yika|s2=1 − ma

wan∗

n∗∑
i=1

yika|u=1 +BiasP
(
τ̂k|u=1

)
+BiasT

(
τ̂k|u=1

)
+ (A85)

BiasA
(
τ̂k|u=1

)
+ mb

wbn∗

n∗∑
i=1

yikb|u=1 − 1
wb

mb∑
i=1

yikb|s1=1 + ϵ̄ika|w2=1 − ϵ̄ikb|w1=1 (A86)

We can next note that

1
wa

ma∑
i=1

yika|s2=1 − ma

wan∗

n∗∑
i=1

yika|u=1 =
(

ma

wa

)(
1
ma

ma∑
i=1

yika|s2=1 − 1
n∗

n∗∑
i=1

yika|u=1

)

=
(

ma

wa

) (
ȳika|s2=1 − ȳika|u=1

)
(A87)

Similarly,
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mb

wbn∗

n∗∑
i=1

yikb|u=1 − 1
wb

mb∑
i=1

yikb|s1=1 =
(

mb

wb

)(
1
n∗

n∗∑
i=1

yikb|u=1 − 1
mb

mb∑
i=1

yikb|s1=1

)

=
(

mb

wb

) (
ȳikb|u=1 − ȳikb|s1=1

)
We can now rewrite the overall bias in the estimator from Lines A85-A86 as

Bias
(
τ̂k|u=1

)
= ma

wa

(
ȳika|s2=1 − ȳika|u=1

)
+BiasP

(
τ̂k|u=1

)
+BiasT

(
τ̂k|u=1

)
+

BiasA
(
τ̂k|u=1

)
+ mb

wb

(
ȳikb|u=1 − ȳikb|s1=1

)
+ ϵ̄ika|w2=1 − ϵ̄ikb|w1=1

= ma

wa

(
ȳika|s2=1 − ȳika|u=1

)
+ mb

wb

(
ȳikb|u=1 − ȳikb|s1=1

)
+ (A88)

BiasP
(
τ̂k|u=1

)
+BiasT

(
τ̂k|u=1

)
+BiasA

(
τ̂k|u=1

)
+ ϵ̄ika|w2=1 − ϵ̄ikb|w1=1 (A89)

The expression in Line A88 can be labeled

BiasD
(
τ̂k|u=1

)
= ma

wa

(
ȳika|s2=1 − ȳika|u=1

)
+ mb

wb

(
ȳikb|u=1 − ȳikb|s1=1

)
This bias term captures the bias induced by differential dropout rates based on which survey respondents were

assigned in Wave 1.

The final difference in Line A89 is just the potential bias caused by differential misreporting between the respon-

dents in Waves 1 and 2. We can label this bias

BiasM
(
τ̂k|u=1

)
= ϵ̄ika|w2=1 − ϵ̄ikb|w1=1

Therefore, we can now write the overall bias term in condensed form as

Bias
(
τ̂k|u=1

)
= BiasD

(
τ̂k|u=1

)
+BiasP

(
τ̂k|u=1

)
+BiasT

(
τ̂k|u=1

)
+BiasA

(
τ̂k|u=1

)
+BiasM

(
τ̂k|u=1

)
where

BiasD
(
τ̂k|u=1

)
= ma

wa

(
ȳika|s2=1 − ȳika|u=1

)
+ mb

wb

(
ȳikb|u=1 − ȳikb|s1=1

)
BiasP

(
τ̂k|u=1

)
= ȳika|u=1 − ȳikt|u=1

BiasT
(
τ̂k|u=1

)
= ȳikc|u=1 − ȳikbc|u=1

BiasA
(
τ̂k|u=1

)
= ȳikbc|u=1 − ȳikb|u=1

BiasM
(
τ̂k|u=1

)
= ϵ̄ika|w2=1 − ϵ̄ikb|w1=1

S42



8 Pre-event/Post-event Survey Designs in APSR, AJPS, and JOP (2015-24)

Table 1 lists more than 25 studies that use the pre-event/post-event survey design. These studies examine a wide range

of important events and outcomes of interest to political scientists. Muñoz, Falcó-Gimeno, and Hernández (2020:

A7) also provide a table with information on 44 studies published in a variety of journals that focus on unexpected

events. Their list spans political science, sociology, and economics. In short, studying the impact of important events

through surveys is a key part of social science and will likely remain common well into the future.

Table 1: Selected pre-event/post-event survey design studies
Study Event(s) Outcome(s)

Balcells, Tellez, and Villamil 2024 Russian invasion of Ukraine Spanish nationalism

Bartels, Horowitz, and Kramon 2023 Kenyan supreme court ruling Judicial support; partisan backlash

Cohen et al. 2023 Bolsonaro election Allegiance to political system

Epifanio, Giani, and Ivandic 2023 2005 London bombings Support toward curbing freedoms

Harding and Nwokolo 2023 Boko Haram attacks Political trust; national identification;
ethnic identification

Mettler, Jacobs, and Zhu 2023 Republicans gaining control Support for the Affordable Care Actof Congress and Presidency

Pop-Eleches and Way 2023 Repression of Moldova Opposition supportelectoral protests

Singh and Tir 2023 Terrorist attacks Reported electoral participation

Bateson and Weintraub 2022 2016 US presidential election Trust in the United States

Berliner and Wehner 2022 Audits Approval of Mayors

Hale 2022 Invasion of Crimea Reported support for Putin

Holman, Merolla, and Zechmeister 2022 2017 Manchester terrorist attack Support for Teresa May

Kalla and Broockman 2022 Personal persuasion campaigns Affective polarization
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Table 1: Selected pre-event/post-event survey design studies (continued)
Study Event(s) Outcome(s)

Ayoub, Page, and Whitt 2021 Pride event Attitudes toward LGBT+ community

Croke 2021 Anti-malaria campaign Leader approval

Goldsmith, Horiuchi, and Matush 2021 High-level state visits Approval of visiting leader

Reny and Newman 2021 George Floyd protests Attitudes toward the police
and African-Americans

Batto and Beaulieu 2020 Legislative brawl Evaluation of the legislature

Mikulaschek, Pant, and Tesfaye 2020 Iraqi PM resignation Support for violent opposition;
public service provision optimism

Frye and Borisova 2019 Election; protest Trust in government

Alkon and Wang 2018 Pollution reduction intervention Regime evaluation

Flesken 2018 Romanian campaign and election National and ethnic salience

Baker et al. 2016 Party brand change Party support/identification

Bishin et al. 2016 Supreme Court ruling Attitudes toward gays and lesbians

Bisgaard 2015 Economic shock Attitudes related to the economy

Branton et al. 2015 2006 immigration protests Immigration policy preferences

Tesler 2015 Elite political communication Public opinion

Hirano et al. 2015 Primary campaigns and elections Perceptions of candidates
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