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1 Glossary of Terms

Notation for Baseline Model

Yikb: Individual ¢’s truthful Wave 1 response

Yikbo- Individual ¢’s observed Wave 1 response

Yikt: Individual ¢’s truthful Wave 2 response

Yikto: Individual ¢’s observed Wave 2 response

Yike: Individual ¢’s truthful Wave 2 response in the counterfactual world where the event “did not happen”
Yikbe: Individual ’s truthful Wave 1 response in the counterfactual world where the event “did not happen”
Np: Number of Wave 1 respondents

Ng: Number of Wave 2 respondents

N: Number of subjects in the target population

Tib: Indicator variable denoting whether individual ¢+ completed the survey in Wave 1

Tia: Indicator variable denoting whether individual  completed the survey in Wave 2

€xblr,—1: Average measurement error in Wave 1

€ktlro—1- Average measurement error in Wave 2

Additional Notation for Quota Sampling

b: The number of people in the Wave 1 quota group
Ja: The number of people in the Wave 2 quota group
€ep: The number of people in Wave 1 who would have completed the survey but who were excluded

due to quota constraints
€4’ The number of people in Wave 2 who would have completed the survey but who were excluded

due to quota constraints

Np: The number of potential Wave 1 respondents when quotas are ignored (g, + €5)
Ng: The number of potential Wave 2 respondents when quotas are ignored (g, + €,)
Qi Indicator variable denoting whether individual : is in the quota sample

€kblry—1,—1- Average measurement error in the Wave 1 quota group

€ktro—=1,g=1: Average measurement error in the Wave 2 quota group
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Additional Notation for Rolling Cross-Sections

The total number of people who might complete the survey in either wave (this number includes the
always-responders and the sometimes-responders for both waves)

The number of always-responders

The number of sometimes-responders who would only complete the survey in Wave 1

The number of sometimes-responders who would only complete the survey in Wave 2

The number of individuals who would complete the survey if assigned to Wave 1

The number of individuals who would complete the survey if assigned to Wave 2

The total number of Wave 1 and Wave 2 respondents (random variable)

The number of Wave 1 respondents (random variable)

The number of Wave 2 respondents (random variable)

Indicator variable denoting whether individual ¢ is an always-responder

Indicator variable denoting whether individual : would only complete the survey if assigned to Wave 1
Indicator variable denoting whether individual ¢ would only complete the survey if assigned to Wave 2
Indicator variable denoting whether individual 7 would complete the survey in at least one of the two
waves

Indicator variable denoting whether individual : would complete the survey if assigned to Wave 1
Indicator variable denoting whether individual : would complete the survey if assigned to Wave 2
Average measurement error for the respondents who would complete the survey in Wave 1

Average measurement error for the respondents who would complete the survey in Wave 2

The proportion of Wave 1 and Wave 2 respondents who are sometimes-responders

(assumed to be the same in both waves for the comparison to the baseline model)

Additional Notation for the Panel Design

Individual ’s truthful Wave 2 response after completing the same survey in Wave 1
Individual 7’s observed Wave 2 response after completing the same survey in Wave 1
The number of always-responders

Indicator variable denoting whether individual 7 is an always-responder

Average Wave 1 measurement error for the always-responders

Average Wave 2 measurement error for the always-responders
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Additional Notation for the Dual Randomized Survey Design

Individual ¢’s truthful Wave 2 response after completing Survey B in Wave 1

Individual ¢’s observed Wave 2 response after completing Survey B in Wave 1

The number of always-responders

The number of sometimes-responders who would only complete both surveys if randomized to take
Survey A in Wave 1

The number of sometimes-responders who would only complete both surveys if randomized to take
Survey A in Wave 2

The number of possible respondents who might be in our sample as someone who completed Survey
A in Wave 1

The number of possible respondents who might be in our sample as someone who completed Survey
A in Wave 2

The total number of Wave 1 and Wave 2 respondents (random variable)

The number of Wave 1 respondents (random variable)

The number of Wave 2 respondents (random variable)

Indicator variable denoting whether individual 7 is an always-responder

Indicator variable denoting whether individual 7 would only complete both surveys if randomized to
take Survey A in Wave 1

Indicator variable denoting whether individual 7 would only complete both surveys if randomized to
take Survey A in Wave 2

Indicator variable denoting whether individual ¢+ would complete both surveys if randomized to

take Survey A in Wave 1

Indicator variable denoting whether individual ¢+ would complete both surveys if randomized to

take Survey A in Wave 2

Average Wave 1 measurement error for the potential respondents who would complete both surveys
if randomized to take Survey A in Wave 1

Average Wave 2 measurement error for the potential respondents who would complete both surveys

if randomized to take Survey A in Wave 2
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2 Baseline Model

2.1 Proof of Proposition 1

Proposition 1. Bias in the baseline model can be written as

Bias (%kmzl) = Biasx (7A'k:|ra:1) + BiasT (f'k\ra:l) + Biasa (fklrazl) + Biasm (%Hm:l) (A1)
where
Biasx (Trjro=1) = Yikblra=1 — Yikblr,=1 (Demographic Bias)

(Fitra=1)

Biast (Thjry=1) = Yikelra=1 — Jikbelra—1 (Temporal Bias)
( ) = Uikbelra=1 — Yikbjra—1 (Anticipation Bias)
(Fipra=1)

= €ktlra=1 — €kbjry=1 (Differential Misreporting)

Proof. The bias in 7y, can be written as

Bias (%k\razl) =F |:7/;k|7'a:1i| - 77—k|7'a:1 (A2)
Na Ny Na
1 1 1
=B | Z Yiktolra=1 — 3, Z Yikbolry=1| — 7o Z (yz'k:t|ra:1 - yikc|ra:1)
i=1 i=1 i=1

Na Ny Na Na
= nla Z Yikto|re=1 — n%, Z Yikvo|ry=1 — n_la Z Yikt|re=1 + n_la Z Yike|rqa=1
i=1 i=1 i=1 i=1
Ng Na Na ny
_ [ 2 1 1 1
=\ Z Yiktolra=1 — 7. Z Yiktlra=1 | + 5 Z Yikelra=1 ~ 7, Z Yikbolry=1
i=1 i=1 i=1 i=1

The first of the two expressions in the line above is just the average measurement error in the Wave 2 respondents’

answers. We can denote this average measurement error as

Na Na
_ 1 ‘ 1 A
6kt|7"a:1 = e yzkt0|m:1 . Yikt|re=1
i=1 =1

Further, we can define the average measurement error in the Wave 1 respondents’ answers as

ny ny

- _ 1 1

€kblry=1 = 7, E Yikbolry=1 — 5, E Yikb|ry=1
i=1 i=1
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We can now rewrite Equation[A2] as

ny

Na
. ~ _ 1 1 _
Bias (Thjro=1) = €rtjra=1 + o E Yikelra=1 — | 77 E Yikblrp=1 T €kblry=1 (A3)
i=1 i=1

np

Na
1 1 = =
= E Yikelra=1 — 7, § Yikblry=1 T €ktjro=1 — €kblr,=1
i=1 i=1

The first of the two differences in Equation [A3]is the average difference between Wave 2 respondents’ truthful
counterfactual answers and Wave 1 respondents’ pre-event truthful answers. Since this expression indexes over two
distinct groups of respondents surveyed in two different time periods, it is challenging to interpret. We can gain
traction by modifying Equation slightly. First, we imagine the truthful answers of the Wave 2 respondents had
they instead been surveyed in Wave 1. In other words, we imagine the y;;;, values for Wave 2 respondents. We can

then add and subtract the average of these y;x, values to Equation[A3}

Na ny
Bias (Thjro=1) = n—la Z Yikelra=1 — ni,, Z Yikblro=1 T €ktlra=1 — Ekblry=1T (A4)
i=1 i=1
Na Na
1 1
e Z Yikblra=1 — - Z Yikb|r,=1
i=1 i=1

By reordering the terms, we get:
Na np Na Na
o 1 1 1 1
Bias (Thre=1) = | = E Yikblra=1 — 77 § Yikvlry=1 | + | 7= E Yikelra=1 — 7- § Yikblra=1 | + (AS)
=1 =1 =1 =1
€htlro=1 — €kblry=1

The first expression in Equation [A5|is just the average difference in truthful responses caused by baseline demo-
graphic differences between Wave 1 and Wave 2 respondents. We can label this source of bias “demographic bias”

and write it formally as Biasx (Tjr,=1):

Definition 1 (Demographic Bias).

Ng ny
. A 1 1 — —
Biasx (Tk\ra:1) = E Yikblro=1 — 3, E Yikblry=1 = Yikb|ro=1 — Yikb|r,=1
i=1 i=1

We can then rewrite Equation[A5]as
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Bias (Tyr,=1) = Biasx (Tkjra=1) + (n—la Zyikc\razl - % Zyikb|ra:1> + (Etira=1 — Eblry=1) (A6)
=1 i=1

The middle expression is now limited to Wave 2 respondents only. It represents the average difference between
their truthful Wave 2 answers in the counterfactual world where the event did not happen and their truthful Wave 1
answers had they completed the survey in Wave 1. Interpretation of this term now depends on what we mean by “the
counterfactual world where the event did not happen.” There are multiple plausible versions of this counterfactual
world and which counterfactual we choose impacts how we think about this expression.

One way we might conceive of this counterfactual is in a manner that we would not expect to have an impact
on respondent beliefs or attitudes about issues related to the survey: for example, a scenario wherein the event was
unexpectedly postponed the day prior. Such a counterfactual might be that the day before a political debate, the event
is postponed for two weeks due to a water leak in the scheduled event host facility. With this counterfactual in mind,
the difference between Wave 2 respondents’ ;. and y;x. values should merely be a short-term temporal difference.
Its size would depend on whether any other salient events happened between Waves 1 and 2. It might also be affected
by other temporal factors like the weather, which could impact respondents’ moods, or if Wave 1 was fielded on a
weekday whereas Wave 2 was fielded on a weekend.

However, we could imagine an alternative counterfactual wherein the event was never scheduled. In the debate
example, this counterfactual might be that political parties had agreed a year prior to not hold any debates before the
next election. With this counterfactual in mind, the difference between ¥;x;, and ;.. may not just be determined by
short-term temporal factors. Rather, y;x, could be influenced by anticipation of the event in a way that ;. would
not. For example, the lead-up to the debate might feature increased media attention to the electoral race that would
not have occurred in the world where the event was never scheduled.

To distinguish between bias from temporal and anticipation factors, we first consider another potential outcome—
the Wave 2 respondents’ truthful answers had they been surveyed in Wave 1 and if the event “had never happened.”
We can denote this counterfactual outcome by y;x5.. We can then take Equation[A6|and add and subtract the average

of this potential outcome for Wave 2 respondents.
Na Na
Bias (%k|ra:1) = Biasx (f'k\ra:1) + i Z Yikclra=1 — n% Z Yikbjra=1 | +
i=1 i=1

Na Na

1 1 = =

o E Yikbelra=1 — 7,0 E Yikbe|ra=1 | T (%t\m:l — 5kb|rb:1)
i=1 =1
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By reordering the terms, we obtain

Bias (%k\m:l) - BiaSX (%k|ra:1) + i Zyikch“a:l - nia Z Yikbe|ra=1 + (A7)
i=1 =1

Na Na

1 1 _ _

- § Yikbelra=1 — 7. E Yikblre=1 | + (Ekt\razl - Ekb\rbzl)
i=1 i=1

The first of these two expressions now represents the average difference between the hypothetical post-event
and pre-event truthful answers of Wave 2 respondents in the world where the event did not happen. Thus, it purely

captures bias caused by temporal differences between Waves 1 and 2.

Definition 2 (Temporal Bias).

Na Na
B. A — 1 1 = =
asT \Tklra=1) = 5~ Yikclra=1 — Yikbe|ro=1 = Yikc|ro=1 — Yikbe|ro=1
i=1 i=1

The second expression in Equation represents the average difference in the hypothetical truthful Wave 1
answers of the Wave 2 respondents in the worlds where the event did and did not happen. It thereby captures bias

caused by anticipation factors.

Definition 3 (Anticipation Bias).

Na Na
. A _ 1 1 = —
Biasa (Tk|ra=1) = E Yikbelra=1 — 3 E Yikblro=1 = Yikbe|ro=1 — Yikb|r,=1
i=1 i=1

We can now rewrite Equation[A7]as
Bias (%klrazl) = Biasx (%k‘razl) + BiasT (7A'k|,ﬂa:1) + BiGSA (%k‘,«azl) + (gkﬂrq:l - gkb\%zl) (A8)

The final difference in Equation is simply the average difference in measurement error in the Wave 1 and

Wave 2 respondents’ answers.

Definition 4 (Differential Misreporting Bias).

Biasn (Tk‘razl) = ékt|ra:1 - Ekb|rb:1
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We can therefore rewrite the overall bias term as the sum of the demographic, temporal, anticipation, and differ-

ential misreporting biases given by Definitions [T}H4]

where

~

Biasx (Tijro=1

(
Biast (A

Biasa (Trjre=1

A

(
(Falrae

Biasym

) =
k|ra=1) = Yikelra=1 — Yikbelra=1
) =
)

Bias (7ﬁk|ra:1) = BiCLSx (7A'k|ra:1) + Bz'asT (f'k‘razl) + BiGSA (7A'k|ra:1) + BiasM (7ﬁk|ra:1)

Yikblra=1 — Yikblry=1

Yikbelra=1 — Yikblra=1

= €kt|ra=1 — €kb|ry=1
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3 External Validity

Consider the context where the target parameter that we want to estimate is the average causal effect for the population
of interest:
N

Yikt — yikc)

= _ 1
Tk—ﬁ

i=1

Like when we estimated the average treatment effect for the Wave 2 respondents in our baseline model, the estimator
that we will use to estimate 7 is the average difference between the Wave 2 and Wave 1 respondents’ answers to

question £ of the survey:

Ng np

A 4 _ 1 1

Tk = Tklra=1 = 5 Yiktolra=1 — 3, Yikbo|ry=1
i=1 i=1

The bias in 73, can then be written as
Bias (T,) = Biasx (7x) + Biast (7) + Biasa (i) + Biaswm (7) + Biasu (7x) (A10)
where

Biasx (Ti) = Yikblra=1 — Yikblry=1
Biast (Tk) = Yikelra=1 — Yikbe|ra=1
Biasa (Tk) = Yikbelra=1 — Yikblra=1
Biasn (Ti) = €ktjra=1 — Ekbjry=1

Bi(ZSH (%}J = %k‘razl — ’T'k

This expression for the overall bias is the same as in our baseline model, except for the Biasg (7%) term that ac-
counts for potential bias caused by the Wave 2 respondents having a heterogeneous treatment effect compared to the
treatment effect in the overall population.

Deriving the bias in 7y is trivial. Begin by noting that Bias (%k|ra:1) =F [mm:l] — Th|ro—1» Which can be
rewritten as E [7y;,—1] = Bias (Thr,=1) + Thjra=1. Since 7 = 7yjr,—1, we have E[f},] = E[fy,—1], so we can

change the expression to E [7;] = Bias <%k|7"a:1) + Tkjr,=1. The bias in 7y is then just

S10



Bias (7)) = E [7]) — 7
= Bias (Tujra=1) + Thjra=1 — Tk
= Bias (7yj,=1) + Biasu ()
= Biasx (Thjr,=1) + Biast (Tujr,=1) + Biasa (fujr,=1) + Biasm (Tupr,—1) + Biasu ()

= Biasx (Tx) + Biast (7x) + Biasa (Tx) + Biasm (7x) + Biasu (7x)

where

Biasx (7)) = Biasx (Tkjra=1) = Yikblra=1 — Yikblry=1
Biast (7)) = Biast (Trjra=1) = Yikelra=1 — Yikbelra=1
Biasa (7)) = Biasa (Tkjra=1) = Yikbelra=1 — Yikblra=1
Biasm (k) = Biasm (Thjra=1) = €ktlra=1 — Ekblry=1

Biasy (f'k) = 77_k|ra:1 — Tk

4 Quota Sampling

In this design, we survey two groups of people before and after the event, selecting participants based on covariates
to try to make the two groups similar to each other and to the total population. Let n be the total number of people
who we consider surveying, with n, denoting the number in Wave 2 and n;, denoting the number in Wave 1. As in
the article, let r;, € {0, 1} denote whether individual i completed the survey in Wave 2, and let r;; € {0, 1} denote
whether individual i completed the survey in Wave 1. In addition, let ¢; € {0, 1} denote whether individual i is in
our quota group for either Wave 1 or Wave 2.

Building off this notation, we can let g, denote the number of people in the Wave 2 quota group and g; denote
the number of people in the Wave 1 quota group. We can also define g = g, + g, as the total number of people in our
quota sample. Individuals were not randomized to be contacted in Wave 1 or Wave 2, so g, g,, g are all parameters,

not random variables.
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4.1 Proof of Proposition 2

Proposition 2. Bias in the quota sampling design is given by
Bias (7A'k|ra:17q:1) = Bi&SX (72]4|7~a:17q:1) + B?;CLST (%k‘razl’qzl) + BiasA (7A'k|m:17q:1) —+ BiasM (%k‘razl’qzl)

where

~

Biasx (Tkjra=1,g=1) = Yikblra=1,q=1 — Yikblry=1,g=1

(
Biast (

~

Tk|ra:1,q:1) = Yikelra=1,q=1 — Yikbc|ra=1,q=1

Biasa (Tkjro=1,4=1 Yikbe|ra=1,qg=1 — Yikb|ra=1,q=1

Biasm (Tk\razl,qzl) = g.’€t|7’a:1,q:1 - El<;b|7"b:1,q:1

Proof. The causal parameter we want to estimate is the average causal effect of the event on the Wave 2 quota group’s
truthful responses to question % of the survey:

Jda
- _ 1
Tklre=1,g=1 = 7~ Yiktlra=1,q=1 — Yike|ra=1,q=1
Ga

=1

The statistic that we will use to estimate this parameter is the average difference between the reported answers of the

g, respondents who completed our survey in Wave 2 and the g;, respondents who completed it in Wave 1.

Ya 9
s - 1 E . _ 1 E )
Tkire=1,g=1 = Ja Yikto|ra=1,q=1 % Yikbo|ry=1,q=1
=1

=1

Following the same procedures from the analysis in Section 2 of the article, the bias in this estimator can be

rewritten as

Bias (7A'k|ra:17q:1) = BiaSX (7A'k|ra:17q:1) + BiasT (%k\razl,qzl) + BiaSA (7A'k|ra:17q:1) + BiCLSM (%k\razl,qzl)

where

S12



Biasx ( k|ra=1,q=1 Yikblra=1,qg=1 — Yikb|ry=1,q=1

Biast

~

Tk|ra:1,q:1) = gikc\m:l,q:l - gikbc\razl,qzl

Biasa (Tkjra=1,g=1 Yikbe|ra=1,qg=1 — Yikb|re=1,g=1

BZ@SM (Tk\razl,qzl) = glct|7"a:1,q:1 - El<:b|rb:1,q:1 o

The difference between this overall bias term and the Bias (%k‘razl) expression that we derived in Section 2 of the

article is that this term restricts the focus to our quota sample.

4.2 Proof of Proposition 3

Proposition 3. Quota designs reduce bias if and only if

Bias (%k\mzl,qzl)

Na

< ’ (g—“> Bias (%k|ra:17q:1) + (%) Bias (ﬁc\raﬂ,q:o) +

g 9 - _
(n_z - n_b> (yik‘bo'rb:l,q:l - yik)bo"r‘b:l,q:o)

When the inequality is flipped, quota sampling amplifies bias.

Proof. Whether quota sampling improves on our baseline model depends in part on whether the bias in the excluded

group is smaller or in the opposite direction as the bias in the quota group. It also depends, to some extent, on external

validity considerations, since using the quota sampling estimator changes the parameter that we are estimating.
Focusing just on the potential bias reduction, the difference in bias between the baseline model and quota sam-

pling can be written as

’Bias (Fifra=1) ! — ‘Bz’as (Fhframt,g=1) ’ :‘Biasx (Fujraz1) + Biast (Typra=1) +
Biasa (%klm=1) + Biaswm (ﬁc\razl) ’—
‘B’iGSX (%k\razl,qzl) + BiGST (7A'k|7~a:1,q:1) +

BiCZSA (7A'k|7-a:1,q:1) -+ B’iGSM (%khﬂa:l,q:l) |

We can decompose Bias(7y,,~1) into a weighted average of the bias in the sub-sample who we would have
surveyed if we had done quota sampling and the bias in the sub-sample who we would have excluded in the quota

sampling design. We will denote the number of Wave 2 individuals who would have been excluded under quota
S13



sampling as e, = n, — g,. Likewise, we will denote the number of Wave 1 individuals who would have been
excluded under quota sampling as e, = ny — gp.

We then have

Bias (%k‘razl) =Biasx (%k|ra:1) + BiasT (%k‘razl) + Biasa (%k|ra:1) + Biasym ($k|ra:1)

Ng np
. A _ 1 1
Bias (Tk\razl) =ne E Yikblra=1 — 7, E Yikb|ry=171

i=1 i=1
Na Na

1 . _ 1 . +

Na ylkbc|ra:1 Ta yzkb|ra:1
i=1 =1

Na Na

1 1

Ta Z Yikelra=1 — e Z yikbc|ra:l+
i=1 =1

Ektlra=1 — €kb|ry=1

which we can separate into
Ja €q 9b €p
. A _ 1 1 1 1
Bias (Tk|7~a:1) = E Yikblra=1,q=1 1 5. E Yikblra=1,4=0 — | 7, g Yikblry=1,4=1 T 7~ E Yikblry=1,¢=0 | T

i=1 i=1 i=1 =1
YGa €a Ga €q

1 ) + 1 ) B ) + 1 ) +

g Yikbe|ra=1,q=1 Na Yikbe|ra=1,g=0 Ta Yikb|re=1,g=1 Ta Yikb|re=1,g=0
i=1 i=1 i=1 =1

Ja €a

9a €q
1 . 4+ L . B . 4+ L . +
T Yikc|ra=1,g=1 Ta Yikelra=1,4=0 T Yikbe|ro=1,g=1 Ta Yikbe|ro=1,g=0

i=1 i=1 i=1 i=1

Ya €a YGa €a
1 ) 4+ L , B . + L , _
Na Yikto|re=1,q=1 Ta Yikto|re=1,q=0 T Yikt|ro=1,q=1 e Yikt|ra=1,q=0

=1 i=1 i=1 i=1

9b €pb 9b €pb
1 E ) 4+ L E ) _ | L E ) 4+ L E ) )
ny Yikbo|ry=1,q=1 ny Yikbo|ry=1,q=0 ny Yikb|ry=1,q=1 ny Yikb|ry,=1,4=0
i=1 i=1 i=1 i=1

We can simplify this expression as follows
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<

Bias (%k|ra:1)

g

(n_l;> yzkb|rb 1,q=1 + < )yzkb|rb— 1,q= 0) +
g kbclrqo=1,q=1 + < ) yzkbc\rafl,q 0 — <<g_> yzkb|ra71 g=1 + < ) yzkbhﬂafl,q 0) +

ikb|ra=1,q=1 + < ) yzkbh"a—l q=0 — (

gIe

> Ya €q vl
ykc|ra7 ,q=1 + ( )yzk;c\raf 1,q=0 — < n_a> kbc|rqe=1,q=1 + (n_a) yikbc|ra:1,q:0 +

<
2

g
—_ — ~— ~—

o

Yi
Ya € Tl
ikto|rqa=1,q=1 + ( ) yzkto\ra—l q=0 — ( ) ylkt\ra—l q=1 + (i) Yikt|ro=1,q=0

g —
) Yikbo|ry=1,q=1 + < > yzk’bo\rb 1,q=0 — (}%) gikb\rb:l,qzl ( >gikb|rb:1,q:0>>

gikbh’a:l,q:l - ( ) yzkb\rb 1,q=1 + ( > yzkb\raf q=0 — < > kb|rb:1,q:0+

/N
3|<e

(<
)

Bias (7A'k|ra:1) =

3
8

ge

gikbc\m:l,q:l - < ) yzkb|ra—1,q 1+

Ny
3o

Yi
n—“> Yikbe|ra=1,g=0 — < ) Yikb|ra=1,q=071

g

_ g _
Yikelra=1,q=1 — <n_2) Yikbe|ra=1,g=1 + ikc|rqa=1,q=0 — < a) ikbe|rqa=1,q= ot
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1aSA (Tk|ra:1,q:1) + (i) Biasa k|ra:1,q:0)
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Bias (%k|ra:1) = Bias (Ak\razl,qzl) + <Z—‘;> Bias (%k\razl,qzo) +

7 a5 ea ) g e\ 7
Uikblry=1,q=1 — (n—b> Yikblry=1,=1 T (,72) Yikb|ry=1,q=0 — (,72) Yikblry=1,¢=01
z » )\ g ea ) 2 e\ g

€kblry=1,g=1 — <n_b> €kb|ry=1,q=1 + <n—a) €kb|ry=1,q=0 — (n—l;) €kb|ry=1,q=0

)
)
)
n—a) Bias (Fup—1.q-1) + (n—> Bias (Fp,—1.4-0) +
)
)
)
)

Bias (%kh"a:l) =

9\ & ea \ e \
ikbo|rp=1,q=1 — (”_b> Yikbo|ry=1,q=1 + (i) Yikbo|ry=1,g=0 — <”_b> Yikbo|ry=1,q=0

Bias (Thjro=1,9=1) + (Z—“) Bias (Trjro=1,4=0) +

<y

9b 57 g - 9 5
ikbolrp=1,g=1 — (n—b> Yikbolry=1,qg=1 T (1 — ﬁ) Yikbolry=1,4=0 — (1 — n—b> Yikbo|ry=1,4=0

Bias ('ﬁdra:l) = Bias (%k\razl,qzl) + <Z—Z> Bias (’fk\razl,qzo) +

Ga __ Gb ) 4. — [ Y2 _ 9 ) 7.
N nb) Yikbo|ry=1,q=1 (na nb) Yikbo|ry=1,q=0

Bias (Fyjr,=1) = g-) Bias (Thjr,—1,4=1) + (n—) Bias (Tjry=1,4=0) + (A11)

(
(
(
(
(
Bias (fup,-1) = (£
(
(
(
(
(

Z_Z - %) (gikbo|rb:1,q:1 - gikbo\m,:l,q:O) (Alz)

Therefore, we have shown that the bias in the standard estimator in the baseline model is simply the weighted average
of the bias in the estimate from a quota sample and the bias for the sub-sample that would be excluded, along with a
residual correction factor.

Quota sampling will then decrease bias if and only if
| Bias (Firu=1,4-1) | < |Bias (Tair,=1) |

or (utilizing Lines [ATTHAT2)

Bias (%k‘razquzl) <

(2) Bias (Fipurm) + (22) Bios (gra-rm0) +

Ya 9v = 7
<n_a - n_b> (yikboh’b:l,q:l - yikbo\rbzl,qZO)
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4.3 Examples of How Quota Sampling Could Amplify Bias

We begin with a hypothetical phone survey carried out in a town before and after an important event. In Wave 1,
the survey firm was able to meet its quotas without needing to call anyone twice. However, before the end of Wave
2, the survey firm had to start redialing numbers. Without the quota constraints, the firm may have been able to
contact a sufficient number of people without making multiple attempts to reach a single individual. However, the
quota constraints in this example would lead to a Wave 2 sample with (on average) harder-to-reach individuals than
the Wave 1 sample. These harder-to-reach individuals might differ in many ways from the easier-to-reach ones, even
after conditioning on the covariates balanced through quotas. As such, quota sampling could either reduce or amplify
bias, depending on the relationship between these covariates and the potential outcomes.

We next consider a hypothetical involving an online survey. In Wave 1, the survey firm is able to meet its quotas
without an issue. However, in Wave 2, the quota constraints make it difficult for the firm to obtain a sufficiently large
sample. For this reason, the firm has to work harder, either by advertising the survey more broadly or by offering
potential respondents further incentives. This change in sampling procedures could lead to large demographic dif-
ferences between Wave 1 and Wave 2 respondents on unobservables. Whether quota sampling would increase bias

would depend on the relationship between the imbalanced factors and the potential outcomes.

S5 Rolling Cross-Sections

Under this design, researchers start with a large group of individuals and randomly assign them to be asked to
complete the survey in either Wave 1 or Wave 2. Some complete the survey and others do not, sometimes because
they are never successfully contacted. We can think about our sample as including a group of always-responders who
will complete the survey if asked in either Wave 1 or Wave 2, as well as a group of sometimes-responders who would
complete the survey in either Wave 1 or Wave 2 but not both. There may also be some never-responders, but we will
put them aside for this analysis since they are inaccessible to us. Let n,, denote the total number of always-responders
and sometimes-responders. Further, we can denote the number who actually complete the survey in Wave 1 as n;, and
the number who actually complete the survey in Wave 2 as n,. Among the n, Wave 1 respondents, we will use n;
to denote the number of Wave 1 always-responders and m; to denote the number of Wave 1 sometimes-responders
(who would not have completed the survey if we had tried to ask them in Wave 2). Likewise, among the n, Wave
2 respondents, we will use n) to denote the number of Wave 2 always-responders and m to denote the number of
Wave 2 sometimes-responders (who would not have completed the survey if we had tried to ask them in Wave 1).
We will denote the total number of respondents by n and the total number of always-responders by n*.

S18



For clarity, we have these relationships:

Ny +ng="mn

* *

ny +my =ny
* *

n, +tm, =ng
*

n,+mn.=n

Also note that n,, and n* are parameters that do not depend on the randomization. Meanwhile, n,, ng, n, n;, m;,
and m;, are all random variables that depend on the randomization.

We can denote whether individual 7 is an always-responder (instead of a sometimes-responder) by u; € {0,1}.
We can also continue to denote whether an individual completed the survey in Wave 1 by r;;, € {0, 1} and whether
they completed the survey in Wave 2 by 7, € {0,1}. Further, we will let s; € {0,1} denote whether individual
i is a sometimes-responder, s;; € {0,1} denote whether individual 7 is a sometimes-responder who would only
complete the survey in Wave 1, and s;» € {0, 1} denote whether individual ¢ is a sometimes-responder who would
only complete the survey in Wave 2. We will also let m; denote the number of sometimes-responders who would
complete the survey if they were assigned to take it in Wave 1 and m,, denote the number of sometimes-responders
who would complete the survey if they were assigned to take it in Wave 2. Further, let w; € {0, 1} denote whether
individual i would complete the survey in at least one of the two waves, w;; € {0, 1} denote whether individual
would complete the survey if assigned to Wave 1, and w;» € {0, 1} denote whether individual 7 would complete the
survey if assigned to Wave 2. Then the number of individuals who would complete the survey if assigned to Wave
1 can be written as wp, = n* + my = va w;1 and the number who would complete the survey if assigned to Wave
2 can be written as w, = n* + m, = va w;o. For clarity, note that w,, wy, m,, and m; are parameters and that
n* 4+ mg + mp = Ny,.

We might be tempted to think that the causal parameter of interest is the average treatment effect for Wave 2

respondents:

Na

1
e (yikﬂra:l - yikc|ra:1) .
i=1
However, this value is a random variable, not a parameter, since 7, is a random variable. Instead, there are two causal
parameters that we might want to estimate. The first is the average treatment effect for the always-responders from

Waves 1 and 2:
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n*

- 1
Tklu=1 = E (yikt\u=1 - yikc|u:1)

=1

The second is the average treatment effect for the combined group of always-responders, sometimes-responders who
we sampled, and sometimes-responders who we might have sampled but did not due to the randomization:

Nw

- _ 1
Tklw=1 = (yz‘kt|w:1 - yikc\wzl)

Nw
=1

The statistic that we will use to estimate both parameters is the average difference in reported answers between the

n, respondents who complete the survey in Wave 2 and the n;, respondents who complete it in Wave 1.

Na np

. A 1 A 1 A

Tklu=1 = Tklw=1 = e Yikto|ra=1 — ny Yikbo|ry,=1
i=1 =1

5.1 Proof of Proposition 4

Proposition 4. When estimating Ty|,—1, the bias in Ty,— can be written as
Bias (7A-k|u:1> = Biasg (f'k\u:l) + Biast (ﬁ;\u:l) + Biasa (%k|u:1) + Biasy (%szl)
where

i > — Ma (4. s my (4. — 7.
BZ@SS ( k|u:1) — wa (yzkt|32:1 yzkt|u:1) + wp (yzkb|u=1 yzkb|31:1)
k|u:1) = _ikc|u:1 - gikbc|u:1

) = Yikbelu=1 — Yikblu=1

k|u:1) = €iktjwa=1 — Eikblwi=1

Proof. When estimating 7y|,—1, the bias in 7j,—; is

Bias (Tiju=1) = E [Teju=1] — Thju=1

n*

Na np

— 1 § : 1 § : 1 2 :

=F e Yiktolre=1 — e Yikbo|ry=1| — 7= (yik:ﬂu:l - yikzc\uzl)
i=1 =1 =1

1=

Taking advantage of the fact that vkt = Vikt + €kt a0d Yikpo = Yikp + €k, WE get
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Bias <7A'k|u:1) =

In the last line,

Bias (f'k‘u:l) =F

*

B Na ny n
1 1 1
=F e § Yiktolra=1 — 3, E Yikbo|ry=1| — 77 E (yikt|u:1 - yikc|u=1)
L i=1 i=1 =1
B Ng nyg n*
— 1 , . 1 § . , 1 § . —
=F Na (yzkt\razl + 61k:t|ra:1) "y (yzkbh“b:l + Ezkb|rb:1) e (yzkt|u=1 yzkc\uzl)
L =1 =1 =1
B Na ny n*
— 1 = 1 —= 1
=FE e E Yiktlra=1| + €iktjwy=1 — E o g Yikblry,=1| — €ikblur=1 — 7= E (yikt\uzl - yikc|u:1)
L i=1 i=1 =1

we utilize the fact that the n, values of €;4,,—1 are a random sample from the €;4¢).,,—1 values, and

S
1

;E Yikt|ra=1
L =l J

€iktlwa=1 — Eikblwi=1

E

S
1

EE Yikt|ra=1
L =l J

€iktlwa=1 — Eikblwi=1

- F

We can further rewrite the overall bias term as

S
1

n—bE Yikb|ry=1
L =1 i

n*

_ L
n*

S -
1

n_bzyikb|rb:1
L =1 J

likewise the n;, values of €;;),,,—1 are a random sample from the €., —1 values.

n*

1=

(yikt‘UZI - yikc|u:1) —+
1

n* n*

1
E Yikt|u=1 + n E yikc|u:1+
i=1 =1

Ng n* n* ny
=B 2D virtramt | = =D vikthumr | + | =D Yikepum1 — B - > Yikin-1| |+ (A13)
i=1 i=1 i=1 i=1

€iktlwa=1 — Eikblwi=1

Na n*
1 1 _
E e E Yiktlro=1| — 7= E Yiktju=1 = F
i=1 i=1

-
1 .
e Yikt|ra=1,u=1
L =1 i

_ ni
1 )
Na yzkth’a:l,u:l
L =1 i

Focusing on the first term in Line [AT5] note that

S21

(A14)

We can begin by focusing on the first of the two differences in Line We can break this expression down as

i ng mg n*
1N, LN, AN,
Na yzkt|ra:1,u:l Ta yzkt\razl,@:l n* yzkt\u:l
L =1 i=1 1=1

TTLZ n*
+ B | . _ 1 .
Na yzkt|7’a:1,52:1 o yzkt|u:1
i=1 =1

n* my
L ) E|L .
o Yiktju=1 + Ta Yikt|rq=1,s2=1
i=1 =1

(A15)



ng

1

e Yikt|ro=1,u=1
i=1

_ nt
n*
=EB na:z;; E Yikt|ro=1,u=1

ng, +n —-n
=F naZL 3 E Yikt|re=1,u=1

_ ne -
R n,
=F nan E Yikt|ro=1,u=1 +F - :LZ E Yikt|ro=1,u=1

L i=1 i=1

i a TLZ
=B | E | Al16
o nenk Yikt|ra=1,u=1 + e Yikt|ro=1,u=1 ( )

altq a
L =1 i=1

The second term in Line @] is the expected value of a random sample of n;, draws from the y;3¢,—1 values (the y;x
of the always-responders). Therefore, it equals the mean of the y;s,—1 values.

n

Ly ymm:l,u:l] = ) Yikthumt (A17)

i=1 i=1
)

E

Combining Lines[AT3{AT4] [AT5|[AT6] and[AT7] we get
TL:; n* n*

,::ZZ Z Yiktjra=1,u=1| T 7% Z Yiktlu=1 — ,% Z Yiktlu=1 + £
i=1 i=1 i=1

n* np

1 1

ey E Yikeu=1 — e E Yikblr,=1
i=1 i=1

Mg
. N 1
Bias (Tk|u:1) =LK e E Yikt|ro=1,50=1
i=1

) + €iktlwa=1 — €ikblwi=1

= <E L Zyimml] —E [ﬁ; > Yiktlro=tu=1 ) + (A18)
i=1 i=1
n* ng
<nL Z Yikelu=1 — F [n%) Z Yikb|ry=1 ) + €iktjwy=1 — €ikblwi=1 (A19)
i=1 i=1

We can now focus on the first difference in Line [AT9] We can rewrite this expression as

n* g n* n my
5 ST 6 SYPANI S SYMRUISY V] £ SUTMENN RUZJES s
oy tkclu=1 ny Yikb|ry=1 oy Yikclu=1 "y Yikb|ry=1,u=1 % Yikb|ry=1,s1=1
i=1 i=1 i=1 1=1 i=1
n* my "
SED SR F o B[y,
oy tkclu=1 b Yikb|ry=1,s1=1 "y Yikb|ry=1,u=1
i=1 i=1 i=1

(A20)

The last term in Line [A20| can be written as
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L . i
1 _ L
E n—bE Yikblmy=1,u=1| = E o E Yikb|rp=1,u=1
i=1 i=1

.
y

_ ng+(np—nyp)
=F T nenp E Yikblry=1,u=1
i=1

N
T

n
b
nf—np n
— b E b E
=F nyn; Yikblry=1,u=1 +FE nyng Yikblry=1,u=1
=1 =1

ny ny

J— -my 1

=E o nykbmzlmzl + B nE E Yikblry=1,u=1 (A21)
=1 i=1

Similar to what we did in Line we can note that the second term in Line [A2]]is the expected value of a sample
of n; draws from the y;xp.—1 values (the y;i, of the always-responders). Therefore, it equals the mean of the y;pju—1

values.

TLb n*
B\ 21 Yikblry=1,u=1 o zyszul (A22)

Combining Lines [ATS8{AT9][A20] [A21] and[A22] we get
- L nTT:E;; Z Yikt|ra=1,u=1 ) + # Z Yikelu=1—"
=1 | i=1

mg

1

TNa Yikt|ra=1,50=1
=1

my, y n*
1 —-my 1
E n—bg Yikblry=1,1=1| — | & — E Yikblry=1,u=1 +;E Yikblu=1 | +
i=1 i=1 i=1

Bias (%kluﬂ) = (E

€iktjwa=1 — Eikblwi=1

mg B nk 7
1 mp
= | E " g Yiktlra=1,sa=1| — & " E Yiktlra=1,u=1| | + (A23)
i=1 L i=1 ]
Tl* n*
1 1
oy E Yikelu=1 — 7= E Yikblu=11 (A24)
i=1 i1
ny m;

my 1 _ _
o E Yirblry=1,u=1| — £ | 5~ E Yikblry=1,51=1 | | T €iktjwo=1 — Eikblwi=1 (A25)

1=1 =1

The expression in Line [A24]is the average difference between the Wave 2 truthful answers of the always-responders
in the counterfactual world where the event did not happen and their Wave 1 truthful answers in the world where

the event did happen. As we did in Section 2, we can decompose this term into the bias caused by temporal factors
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between Waves 1 and 2 and the bias caused by anticipatory factors.

I Yikchumt — = D> Yikbju=1 =ikelu=1 — Jikblu=1 (A26)
i—1 i—1
:BiGST (%k‘uzl) + BiaSA <7A'k|u:1) (A27)
where
Biasy (%k\uzl) = gikc|u:1 - gz’kbc\u:l (A28)
Biasa (Trju=1) = Yikvelu=1 — Jikblu=1 (A29)

Therefore, we can write the overall bias term as

Bias (Tiju=1) = (E a yikt.razl,@:l] - B [;jf;; D Yiktira=tu=1 ) + Biast (fiju=1) + (A30)
i=1 i=1
Biasa (Toju=1) + | E o Z Yiktry=tu=1 | — B | - Zyilcb|rb:1,51:1 + (A31)
i=1 i=1
€ikt|wa=1 — Eikbjwi=1 (A32)

We will start with the first difference in Line [A30l Note that
mp nk B mp nk
1 m* m* 1 m* 1
e E yikzt|ra_1,sg_1] ) [na,’jz g Yiktlra=1,u=1| =E | 7. (ma E yikzt|ra_1,sg_1) — e <n_a E yikzt|ra_1,u_1>]
i=1 i=1 i=1 i=1
i m; n;
mp 1 1
=K Toa (m; E Yiktlra=1,52=1 — 7= E yikt|ra1,u1>]
i=1 i=1

(A33)

E

So the expression inside the parentheses in Line|A33|is just the difference of two averages. The outside weight % is

the proportion of Wave 2 respondents who are sometimes-responders. Inside the parentheses, the first average is the
mean Y, value of the Wave 2 respondents who are sometimes-responders, and the second average is the mean y;x;
value of the Wave 2 respondents who are always-responders.

Therefore, the first average inside the parentheses in Line [A33]is the average of a random draw of the m;
sometimes-responders who would only complete the survey in Wave 2. We can use p to denote the probability

that an individual will initially be randomized to be contacted in Wave 1, making 1 — p their initial probability of
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being contacted in Wave 2. Then the expected numbers of always-responders and sometimes-responders who will

complete the survey in Wave 1 and Wave 2 are

E [n;] = pn*
Eln;]l = (1—p)n”
Emg] = pmy,

Emg] = (1 =p)ma

a

Similarly, the expected numbers of Wave 1 and Wave 2 respondents are

Elm] = Elng +mg] = Elng] + Emg] = p(n* + my)

Elna] = Elng +mg] = Elng] + Efmg] = (1 —p) (0" + ma)

Also, the expected proportions of sometimes-responders in Waves 1 and 2 are

Returning to the expression in Line [A33] the proportion of Wave 2 respondents who are sometimes-responders is
statistically independent of the mean ¥, value of these sometimes-responders. Likewise, it is statistically indepen-

dent of the mean ;4. value of the Wave 2 respondents who are always-responders. We therefore have

mg ng

m* 1 1

e\ mz E Yiktlra=1,5o=1 ~ o= E Yikt|ro=1u=1
i=1 i=1

E

-B[52] e
=a (E

Inside the parentheses of Line @ the first term is the average of m random draws from the v, values of the

mg ng

1 . _ 1 .

m? yzk‘t|7“a:1752:1 n* yzkt|ra:1,u:1
i=1 =1
mg ng

1 E ) LE )

m? yzkt|ra=1,52:1 n* yzkt\razl,uzl
i=1 =1

(A34)

- F

m, sometimes-responders who would only complete the survey in Wave 2. Similarly, the second term is the average

of n; random draws from the y;;, values of the n* always-responders. Therefore, we have

E

mg Mq
1 _ 1
e Z yiktra:1,52:1] = e Z Yikt|sp=1
i=1 i=1
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and
’I’LZ n*
1 1
B\ os E Yiktlra=lu=1| = 7% § Yikt|u
i=1 =1

We can then write

*
a

ma
ma 1 E . _ 1 E . __ Ma
Wa E mz ylktlT‘a:LSz:l E n:; — yzkt|ra:1’u:1 — Wa
=1

n,

i=1

Substituting this expression into the overall bias term, we get

*

=1

ma n*
1 1
e Z Yikt|so=1 — ;= Z Yiktlu=1
i=1 i=1

Bias (Tyju=1) = m% Z Yiktlss=1 — 7= Z Yirtjue1 | + Biast (Tgu=1) + (A35)
=1 =1
Biasa (Toju=1) + | E nT:f{b Z Yiktlry=tu=1 | — B |- Zyikb|rb:1,51:1 + (A36)
=1 i=1
€ikt|wa=1 — €ikbjwi =1 (A37)

We can now turn to the difference in Line[A36] Similar to before, we can begin by noting that

y my, y my,
m 1 my 1 m 1
b — b b
E mong E Yikb|ry=1,u=1 - K o E Yikblry=1,51=1 =K m | np E Yikblry=1,u=1 | — w | E Yikblry=1,51=1
i=1 i=1 i=1 i=1

As in Line|A33| the expression inside the parentheses in Line is just the

* "o i
— my 1 E 1 E
7E ny ’I’L_;: yikb|rb:1,u:1 - m;; yikb"f‘b:LSl:l
i=1 i—1

(A38)

difference of two averages. The outside

weight 7:—5 is the proportion of Wave 1 respondents who are sometimes-responders. Inside the parentheses, the first

average is the mean y;x;, value of the Wave 1 respondents who are always-responders, and the second average is

the mean y;;;, value of the Wave 1 respondents who are sometimes-responders. Since in this context the weight is

statistically independent of the averages, as explained earlier, we can write

i ny my i y my
L 1 [ 1 1
E |5 nE E Yikblr=1u=1 ~ 7 E Yikblrp=1,:1=1 | | =F [nb} E nE E Yikblry=1u=1 ~ 7 E Yikblry=1,51=1
i=1 i=1 i=1 i=1

—myp 1 § ) _ 1 } : .
T wy E n;; ylkb‘T‘b:LUZI E m; yzkb|rb:1,51:1
=1 i=1
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Inside the parentheses of Line @ the first term is the average of n; random draws from the ;i values of the
n* always-responders. Likewise, the second term is the average of m; random draws from the y;,;;, values of the my,

sometimes-responders who would only complete the survey in Wave 1. Therefore, we have

ny n*
1 1
E ng E Yikblry=1,u=1| = = g Yikblu=1
i=1 =1

and

my, my
1 _ 1 )
E m E Yikblry=1,51=1| — P, E Yikb|s1=1
i=1 i=1

‘We can then write

) my n* mp

my L E . — 1 E . —mp [ L E , 1 E 4

wp E n; Yikb|ry=1,u=1 E my Yikb|ry=1,s1=1 ~ w, | n7 Yikblu=1 me Yikb|s; =1
1= 1= 1= 1=
=1 i=1 i=1 i=1

Substituting this expression into the overall bias term allows us to write

*

Ma n
. ~ _ Ma 1 1 . A . A
Bias (Tru=1) = 22 | = E Yikt|so=1 — 7% E Yiktlu=1 | + Biast (Thjuzt) + Biasa (Fou=1) +
=1

=1
n* my
my | L . _ 1 . 1 E —
wy | n* Yikblu=1 mp Yikb|s1=1 ikt|wa=1 ikblwi=1
i=1 =1

= (Gintiso=1 — Yintju=1) + Biast (Thju=1) + Biasa (Teu=1) +

Wy (Yikblu=1 — Yikblsi=1) + Eiktjwa—1 — Eikblun—1

= 0% (Uiktlso=1 — Yiktju=1) + 5° (Gikblum1 — Yikbls1=1) + (A40)
Biast (Thju=1) + Biasa (Teju=1) + €ktlwz=1 — Eikblur=1 (A4l1)

The first expression in Line is the proportion of possible Wave 2 respondents who are sometimes-responders
multiplied by the average difference between these sometimes-responders’ y;x; values and the always-responders’
yirt values. The second expression in Line[A40|is the proportion of possible Wave 1 respondents who are sometimes-
responders multiplied by the average difference between the always-responders’ y;, values and these potential Wave
1 sometimes-responders’ y;x, values. Therefore, we can think of the sum of these two expressions as the bias caused

by having sometimes-responders in the Wave 1 and Wave 2 samples.

Biass (Thju=1) = e (Gintlsa=1 — Yiktlu=1) + e (Yikblu=1 — Vikbjs1=1)
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‘We now have

Bias (%k‘uzl) = BiaSs (7A'k|u:1) + BiGST (7A'k|u:1) + BiGSA (f'k‘uzl) + Eikt\wg:l — Eikb|w1:1 (A42)

The expression €ju,—1 — Ekbjw,—1 18 the potential bias caused by differential misreporting in the answers of the

possible Wave 1 and Wave 2 respondents. We can define it as

Biaswm (Tk\u=1) = €ikt|wy=1 — €ikblwy=1

In sum, we can write the overall bias as

Bias (Thjuz1) = Biass (fyjuz1) + Biast (Fruzt) + Biasa (Tyjuz1) + Biasm (Frju=1) (A43)

where

Biass (Tgju=1) = e (Giktiso=1 — Yiktju=1) + o (Yikblu=1 — ikbjs1=1)

= Yikclu=1 — gikbdu:l

= Yikbelu=1 — Yikblu=1

k|u:1) = €iktlwy=1 — €ikblw;=1

5.2 Deriving the Bias When Estimating 7,

Begin by recalling that the average treatment effect of the combined group of always-responders, sometimes-responders
who we sampled, and sometimes-responders who we might have sampled but did not due to the randomization is
written as

Nw

Trw=1 = = Y (Yikthw=1 — Yikeluw—1) (A44)

=1

To estimate this parameter, we will use the same estimator as before: the average difference in reported outcomes

between the n, respondents who complete the survey in Wave 2 and the n;, respondents who complete it in Wave 1.
Na ng
7A—k|w:1 = % Z Yiktolre=1 — an Z Yikbo|ry=1
=1 =1

The bias in this estimator is therefore $78



Bias (%k|w:1) =k |:7A—k|w:1:| = Thlw=1
Nw

i Na np

— 1 1 1

=F e E Yiktolre=1 — T E Yikbolry=1| — 5 (yik’t|w:1 - yikc\wzl)
L i=1 i=1 i=1

Na Ny Nw

=F n—la (yikt|ra:1 + Ez’kt|r,1:1) - nib Z (yikb|rb:1 + Eikb|rb:1> - % Z (Yikt — Yike)

L i=1 i=1 =1

Nw

B Ng np

_ 1 - 1 - 1

=FE e E Yiktlra=1| T+ €iktjwy=1 — E e E Yikblry=1| — Cikblwi=1 — 5~ (yikt\wzl - yikc|w:1)
L i=1 | i=1 =1

i N ny N N
_ 1 1 1 1 _ _
=B |- E Yiktlra=1 | — F e E Yikblry=1| — no E Yiktlw=1 1 ;- E Yikelw=1 T €iktjwa=1 — €ikblwi=1
i=1 i i=1

i=1 =1

Ng, Naw N ny
=| £ n% Z Yikt|ra=1| — i Z Yiktjw=1 | + ﬁ Z Yikejw=1 — ni,, Z Yikblro=1 | | + (A45)
i=1 i=1 i=1 =1

€iktlwy=1 — €ikbjwi=1 (A46)

Note that, as before, w;; € {0, 1} denotes whether an individual would complete the survey if assigned to Wave
1 and w;y € {0,1} denotes whether they would complete the survey if assigned to Wave 2. Similarly, w; € {0, 1}
denotes whether individual ¢+ would complete the survey in at least one of the two waves. Likewise, w, = n* 4+ my
denotes the number of individuals who would complete the survey if asked to do it in Wave 1, and w, = n* + m,
denotes the number of individuals who would complete the survey if asked to do it in Wave 2. Focusing on the first

difference in Line [A45] we can rewrite the expression as

Na N Wq Naw
1 1 _ 1 1
E e E Yiktlro=1| — 7 E Yiktlw=1 = 3~ E Yiktjwo=1 — 7~ E Yiktlw=1
i=1 i=1 i=1 i=1

= Yiktjwo=1 — Yiktjw=1 (A47)

Similarly, the second difference in Line [A45|can be rewritten as

Nw Ny Nw Wy

1 1 1 1

o E Yikclw=1 — E o g Yikblry=1| = 7o E Yikclw=1 = 3, E Yikblwi=1
i=1 i=1 i=1 i=1

Nw Wy Mq Mg
— 1%y — 1%y, + 13y, — 13y,
~ e Yikclw=1 wp Yikblw =1 T Yikb|sa=1 T Yikb|sa=1
=1 =1 =1 =1
Nw Wy Ma
_ 1 1 1
= e E Yikelw=1 — | o, E Yikblwy=1 T 5~ E Yikb|sp=1 | T+ (A43)
=1 i=1 =1
Ma
1
e E Yikb|so=1 (A49)
w
=1

S29



We can rewrite the expression inside the parentheses in Line [A48] as

wy Ma Wy Ma,
1 ) 4+ L1 . — _Nw , 4+ L .
wy E Yikblwi=1 T 7~ E Yikblsa=1 = 3 nm E Yikblwy=1 T 7~ g Yikb|sa=1
i=1 i=1 =1 =1
nw+ N T (Wp —Wyp ) 'lUb
WpNw § Yikblwi=1 + o E Yikb|sa=1
_Nw— wb§ : 2 :
Wpnw Yikb|wi =1 + wbnw Yikb|wi =1 + o E Yikb|sa=1
_Nw—w § :
wbnwb Yikb|wi =1 + o E Yikb|w; =1 + o E Yikb|sa=1
Nw
—Nw—wW 1
= E Yikblwy=1 + 57— E Yikblw—1
i=1 =1

Combining Lines [A47], [A48UA49] and [A50] we get

Nw
Bias (fyjwe1) = Us — 7 + 1)y — —E y + L E y +—§ y +
klw=1 iktlwe=1 iktlw=1 T ikc|lw=1 W ikblwi=1 ikblw=1 1kb|sa=1
=1 i

€ikt|wa=1 — €ikblw; =1

Naw Nw
— = 1 1 Wp—Nw
= (yikt\wgzl - yikt|w:1) + o E Yikelw=1 — 5~ E Yikblw=1 u’jbn E Yikblur=1 + 7 E Yikb|sy=1"T
i=1 i=1

€ikt|wa=1 — €ikblwi=1

Ma
_ (= — — — Wp—Nw 1
= (yikt\wgzl - yikt|w:1) + (yikc|w:1 - yikb|w:1) + 1anw E Yikblwy =1 T 5~ E Yikb|sy=1"T
i=1 —

€ikt|wa=1 — €ikblw; =1

Similar to our discussion in Section 2 of the article, this difference ¥xcjw—1 — Yirbjw—1 can be decomposed into

the bias from temporal factors and the bias from anticipatory factors. Thus, we can write
Yikelwe1 — Yikbjwe1 = Biast (Tojw=1) + Biasa (Frjw=1)
where

BiaST (Tk|w:1) Yi kelw=1 — yzkbc|w 1

Biasa (Tklwzl) Yikbelw=1 — Yikblw=1

We can now write the overall bias term as:
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Bias (Trjw=1) = (Uiktjws=1 — Yiktjw=1) + Biast (Frjw=1) + Biasa (Trjuw=1) + (AS0)

wbnw Z Yikblwi=1 + P Z Yikb|sa=1 + 62kt|w2 1= Ezk’b\wl 1 (ASl)

= =1

The first difference in Line can be written as

wy Wy Ma
wWp—n _ 1 1 1
R Zylkb|w1 1+ - Zyzkb\sg 1= 5 E Yikblwr=1 ~ 37 E Yikblun=1 T 57— E Yikb|sa=1
i=1 i=1 i=1
wy Ma wp
1 1 1
= e E Yikblwy=1 T 5~ E Yikblsa=1 — 3 g Yikblwy =1
i=1 i=1 i=1
Nw Wy
- 1 ) _ 1 )
e Yikblw=1 wp Yikb|wi=1
i=1 i=1

= Yikblw=1 — Yikbluwr =1

We can now write the overall bias term as

Bias (Tejw=1) = (Yikthwa=1 — Yiktjw=1) + Biast (Tepw=1) + Biasa (Trjw=1) + (Jikbjw=1 — Yikbjwi=1) +
€iktjwa=1 — €ikblwy=1
= (@ikt\w2:1 — yikﬂw:l) + (gikb|w:1 — gikb|w1:1) + Biast (%k\wzl) + Biasa (fk\wzl) + (A52)

€iktlwa=1 — €ikblwi=1 (A53)

The differences within the two sets of parentheses in Line come from not being able to see any i, values for
the Wave 1 sometimes-responders nor any of the ¥;x;, values for the Wave 2 sometimes-responders. We can think of
this bias as arising from having sometimes-responders in our sample who differ in systematic ways from the always-
responders and the sometimes-responders who answer the survey in the other wave. We can rewrite this bias term

as

(ﬂikt|w2=1 - ﬂikb|w1:1) - (?ikt\w=1 - @ikb|w=1) = (ﬂikt|w2=1 - gikb\wlzl) - <3u> Yiktjwy=1 — (%’) Yikt|sy =11
(A54)

(%) Yikbluw=1 + ( )yzkb|52 1 (AS5)

= nm—z (gikﬂwg:l - ?ikt\slzl) + e (?]ikb\32=1 - @ikb|w1=1) (A56)
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‘We can label this bias

Biass (Trjw=1) = 2 (Jiktjws=1 — Uikt|s1=1) + 22 (Girbjsa=1 — Jikbjuwr=1)

We can now write the overall bias term as

Bias (Thjw=1) = Biass (Tejw=1) + Biast (Tkjuw=1) + Biasa (Tejw=1) + Eiktlws=1 — Eikbluwi—1

As in the previous proof, €;xw,—1 — €ikblw;—1 18 the potential bias caused by differential misreporting in the answers

of the possible Wave 1 and Wave 2 respondents. We can define it as

Biasn (Trjw=1) = Eiktjws—1 — Eikbjuwri—1

In sum, we can write the overall bias as

Bias (%k|w:1) = BiaSs (7A'k|w:1> + BiCLST (7A'k|w:1) + BiasA (7A'k|w:1) + BiCLSM (7A'k|w:1) (A57)

where

(=)
Biasa (Tkjw=1) = Yikbclw=1 — Yikbw=1
(

Tk|w:1) = €iktjwo=1 — €ikblwi=1

5.3 Comparing Bias in the Rolling Cross-Section Design to Bias in the Baseline Model

Before proceeding, we can consider the special case where there are no always-responders. We can think of this
scenario as the baseline model but when the parameter that we are estimating is the average treatment effect for all
Wave 1 and Wave 2 respondents. The Biasg (ﬁqw:l) term becomes a weighted average of the pre-event and post-
event differences between the Wave 1 and Wave 2 respondents’ truthful answers. Clearly, bias when estimating the
average treatment effect for Wave 2 respondents in the baseline model is more straightforward to comprehend than
bias when estimating the average treatment effect for both Wave 1 and Wave 2 respondents.

We can now examine how the bias in the estimators 7,—; and 7j,—; from the rolling cross-section design
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compare to the bias in the baseline model from the article. The rolling cross-section design trades the bias in demo-
graphic differences between Wave 1 and Wave 2 respondents for the bias caused by sometimes-responders. Focusing
on Equation we can better understand Biasg (%Mu:l) by considering the special case where the initial numbers
of sometimes-responders in Waves 1 and 2 are the same (m, = my). In that case, Z—Z = Z—:, which we will denote as

o < 1. This symmetry allows us to rewrite Biass (7xu=1) as

Biass (%k|u=1|ma = mb) =0 (?ikt\32=1 - @ikt\uzl) + %: (gikb|u:1 - gikb\slzl)

= & (Yikt|sa=1 — Gintu=1) + & (Yikvju=1 — Jikvlsi=1)
= (gikt|52:1 — Yikb|s1=1 — Yiktju=1 T gz’kb|u:1)

= o [(Uikt|sa=1 — Yitbjsi=1) — (Giktu=1 — Vikblu=1)] (AS3)

Note that the terms inside both sets of parentheses in Line [A5§] resemble our estimator in the baseline model of
Section 2 of the article. In fact, they are equivalent to that estimator in the special case where there is no measurement
error. The first term is simply the standard estimator 7y,,—; without measurement error on a sample consisting
entirely of sometimes-responders. The second term is the same estimator on a sample consisting entirely of always-
responders, except in a world where the Wave 1 and Wave 2 individuals are identical on demographic characteristics.
Since there is no randomness in the baseline model, we can think of both estimators as the average treatment effect
for that sub-sample combined with the corresponding bias term, following from the equation Bias (7) = E [7] — T.

We can therefore write

Biass (Thjut|ma = mp) = o[ (Tajssmt + Biasx (Trjs,=1) + Biast (Thjs,=1) + Biasa (Trsy=1)) —

Thjss1) + Biasa (Trsp=1)) —

(7 (
(Tojuz1 + Biasx (Frjuzt) + Biast (Frjuzt) + Biasa (Fiju=1)) ]
= [ (Fijssms + Biasx (Fujsy—1) + Biasr (

)

Substituting this expression into Equation[A43] we obtain

Bias (m“:l\ma = mb) = aBiasx (%k|52:1) + (&Bz’asT (%k|32:1) + (1 — a) Biast (mu:l)) + (A59)
(OzBiasA (%k|32:1) + (1 — o) Biasa (f’k\u:l)) + Biasm (%k\uzl) + (A60)
a (fk\52:1 - 7_—k\u:1) (A61)

The expression involving bias from temporal factors is jusst3a3 weighted average of the temporal bias for the sometimes-



responders and always-responders. The same logic holds for the expression involving the bias from anticipatory
factors. We also add a new bias term involving the difference in average treatment effect between the sometimes-

responders and always-responders.

In sum, the rolling cross section estimator reduces demographic bias, but it also complicates the rest of the overall
bias term in ways that could either decrease or enlarge the total bias in this design.

If we instead use Equation and consider the special case where the initial numbers of possible Wave 1 and
Wave 2 sometimes-responders are the same (m, = m;), then the weights we obtain % and %’ will be equal. In this

situation, we can define A = '+ = % We can then rewrite the equation for Biasg (%Mw:l\ma = mb) as

w w

Biasg (%k\w:1|ma = mb) = (ﬂikt\m:l - gikb|w1:1) - (gikﬂw:l - gikb|w:1)

Here we are utilizing the way that we wrote Biass(%km:l) at the beginning of Line

This expression is very similar to what we saw in Line As before, we can think about each of the two
differences inside the brackets as mathematically similar to the estimator from the baseline model, specifically in
the case where there is no measurement error. Also as before, we can think of these two estimators as the average

treatment effect for that sample combined with the corresponding bias term. We can therefore write

Biasg (ﬁqw:ﬂma = mb) = (fklwzzl + Biasx (%k‘wzzl) + Biast (%k|w2:1) + Biasa (%k‘wzl)) - (A62)

(fk‘wzl + B?;CLSX (7A'k|w:1) + BiCLST (f'k‘wzl) + BiasA (7ﬁk|w:1)) (A63)

Note that in Line , Biasx (%k‘w2:1) = Yikblws=1 — Yikblur—=1. Since the pre-event and post-event samples in Line
consist of n,, individuals with exactly the same demographic characteristics, we can drop the Biasx (7xjw=1)

term.

Biass (%k|w:1|ma = mb) = (fk‘“&:l + BiCLSX (7A'k|U,2:1) + BiQST (7A'k|w2:1) + BiasA <7ﬁk|wQ:1)) -

(7_—k|w:1 + BiGST (7A'k|w:1) + BiGSA (7A'k|w:1))

Substituting this expression into Line we get

Bias ($k|w:1|ma = mb) = Biasx (%k\w2=1) + Biast ($k|w2:1) + Biasa (f'k‘wQ:l) + Biasm <7A_k|w:1) +

(77-]6‘11)221 - 7ik\w:l)
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Note that this equation can be rewritten as

Bias (%k|w:1|ma = mb) = aBiasx (%k|52:1) + aBiast (%k“s?:l) + (1 — a)Bias (%k\uzl) +
aBiasa (f'k‘@:l) + (1 — o) Biasa (f'k‘u:l) + Biasm (ﬁqw:l) +
(fk\wzzl - 7_—k\w:l)

which is very similar to the expression we derived for Bias (f'k‘uzl |me = mb).

6 Panel Designs

In a panel design, we begin with a group of individuals who have the opportunity to take the same survey in Wave 1
and Wave 2. We can denote whether individual i takes the survey in both waves by u; € {0, 1} and the total number
of respondents who take the survey in both waves as n*. The causal parameter we estimate is the average treatment
effect of the event on these n* respondents’ truthful answers to question k of the survey:

n*

- 1
Tklu=1 = ;= E (yikt\u=1 - yikc|u:1)

i=1
In the above line, we consider ;x,—1 to be individual 7’s truthful answer in the world where they did not complete
the survey in Wave 1. We can distinguish this value from y;y,j,—1, Which we use to denote individual ¢’s truthful
answer in the world where they did complete the survey in Wave 1.

The statistic we use to estimate 7y,— 1S

n* n*
S _ 1 ) 1 )
Thlu=1 = 5% Yikaolu=1 — ;= Yikbolu=1
i=1 i=1

In the above line, we use Yjrqo/u—1 to denote individual ¢’s reported answer in Wave 2 after having already completed

the survey in Wave 1.

6.1 Proof of Proposition 5

Proposition 5. Bias in the panel design can be written as
Bias (?Mu:l) = Biasc (?Muzl) + Biast (%klu:1> + Biasa (%k\uzl) + Biasm (%k\u=1)

where

S35



) = Yikalu=1 — Yikt|ju=1
k\u:l) = gikc|u:1 - gikbc\u:l
) = Yikbelu=1 — Yikblu=1

k|u:1) = Elm|u:1 - Ekb\u:l
Proof. The bias in 7j,—; is just

Bias (Thju=1) = E [Trju=1] — Trju=1

n*

n* n*

— 1 1 1

=F e § Yikaolu=1 — ,x E Yikbolu=1| — 7= E (yikt|u:1 - yikc|u:1)
i=1 =1 )

=1

n* n* n* n*
_ 1 1 1 1
= oF E Yikaolu=1 — E Yikbolu=1 — 7= E Yiktju=1 + ey E Yikelu=1
i=1 i=1 i=1 i=1
n* n* n* n*
_ 1 1 1 1 _ _
== Yikalu=1 — 7= Yikblu=1 — 5= Yiktlu=1 T 7= Yikclu=1 T €kaju=1 — €kblu=1
i=1 i=1 i=1 i=1

n* n* n* n*
_ 1 1 1 1 — —
=\ E Yikalu=1 — 7% E Yiktlu=1 | + | 7= E Yikelu=1 — 7= E Yikblu=1 | T €kalu=1 — Exblu=1
i=1 i=1 i=1 i=1

(A64)

The first difference in Line[A64]can be thought of as the average difference between the n* always-responders’ Wave
2 truthful answers in the world where they completed the survey in Wave 1 and the world where they did not. In
other words, it is the average causal effect of completing the survey in Wave 1 on always-responders’ true answers in

Wave 2, commonly known as conditioning effects. We denote this bias as
n* n*
Biasc <7A—k|u:1) = nL Z Yikalu=1 — nL Z Yiktlu=1 = Yikalu=1 — Yikt|u=1 (A65)
i=1 i=1

Returning to Line [A64] the second difference is similar to what we saw in Equation 5 from Section 2 of the
article. Following what we did in Section 2, we can decompose this expression into bias from temporal factors and

bias from anticipatory factors:

*

L ireumt — = > Yiwumr = Biast (Fju_1) + Biasa (Fu-t) (A66)
i=1 =1

where
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n* n*

Biast (Thju1) = == Zyikdu:l -+ Z Yikbelu=1 = Yikclu=1 — Yikbclu=1 (A67)
i=1 i=1
n* n*
Biasa (Thjuz1) = = Z Yikbelum1 — == Zyikb|u=1 = Yikbelu=1 — Yikblu=1 (A63)
n n
i=1 i=1

Finally, the last difference in Line |A64is just the potential difference in misreporting between Waves 1 and 2.
Biaswm (%k|u:1> = €kalu=1 — Ekb\uzl (A69)

In sum, we can write the bias in the panel design as

Bias (%k‘uzl) = Biasc (?k|u:1) + Biast (muzl) + Biasa (%k‘uzl) + Biasm (f'k\u=1) (A70)
where
BiaSC (Ak\uzl) = 7ika|u:1 - gikt\u:l (A71)
Biasy (Ak\uzl) = gikc|u:1 - gikbc\u:l (AT2)
Biasa (Thu=1) = Yikbelu=1 — Jikbju=1 (A73)
Biasm (Thju=1) = Ehaju=1 — Ekblu=1 (A74)
[

7 Dual Randomized Survey (DRS) Design

In the DRS design, we have n individuals who complete both surveys. We will let n,, denote the number of individuals
who complete Survey A in Wave 2 and n;, denote the number of individuals who complete Survey A in Wave 1, such
that n, + n, = n. Due to the possibility of differential attrition, we can think of our sample as consisting of
“always-responders” who would complete both surveys no matter which survey they were assigned to do first and
“sometimes-responders” whose participation in Wave 2 depends on which survey they receive in Wave 1. We will
denote the number of always-responders by n*, the number of sometimes-responders who would only complete both
surveys if assigned to do Survey A in Wave 2 by m,, and the number of sometimes-responders who would only
complete both surveys if assigned to do Survey A in Wave 1 by m,;. We will also let w, denote the total possible

number of individuals who would complete both surveys if assigned to do Survey A in Wave 2 and w;, denote the
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total possible number of individuals who would complete both surveys if assigned to do Survey A in Wave 1, such
that w, = n* + m, and w, = n* + my,. We will use r;, € {0, 1} to denote whether individual ¢ completed Survey A
after the event and r;, € {0, 1} to denote whether individual i completed Survey A before the event. As before, we
will use u; € {0, 1} to denote whether individual i is an always-responder. We will also use w;; € {0, 1} to denote
whether individual ¢ would complete both surveys if assigned to do Survey A in Wave 1 and w;, € {0, 1} to denote

whether individual ¢+ would complete both surveys if assigned to do Survey A in Wave 2.

We will think of each of the individuals in our sample as having a Wave 1 truthful answer (y;15), a Wave 1 reported
answer (Y;xpo), @ Wave 2 truthful answer in the world where they did not complete Survey B in Wave 1 (y;x;), a Wave
1 truthful answer in the hypothetical world where the event did not happen (y;..), a Wave 2 truthful answer after
having completed Survey B in Wave 1 (y;1,), and a Wave 2 reported answer after having completed Survey B in

Wave 1 (yikao)-

7.1 Proof of Proposition 6

Proposition 6. Bias in the DRS design can be written as
Bias (7A—k|u:1) = Biasp (%k‘uzl) + Biasp ($k|u:1) + Biast ($k|u:1) + Biasa (%Mu:l) + Biasym <7A-k|u:1)
where

_ mg (5 — my (= —
= oy (yika|32:1 - yika\u:l) + o (yikb|u:1 - yikb\slzl)

= Yikalu=1 — Yiktlu=1

= Yikbelu=1 — Yikblu=1

>
Il
~—
I
|

k|u=1 €ikalwo=1 — €ikblwi=1

Proof. The causal parameter we are interested in estimating is the average causal effect of the event on the truthful

responses to question k of the n* always-responders:

n*

- 1
Tklu=1 = E (yikt\u=1 - yikc|u:1)

=1

The statistic that we use to estimate this parameter is just

S38



Ng np
A _ 1 1
Tklu=1 = na Yikao|rq=1 — o Yikbo|ry=1
i=1 i=1

The bias in this estimator is then

Bias (7A'k|u:1) =F |:7A'k|u:1] - 7__k\u:1

B N nyg n*
— 1 1 1
=F Ta E Yikao|rqa=1 — e E Yikbolry=1| — 7% E (yikt|u:1 - yikc|u:1)
L =1 i=1 =1
B Na ny n*
=F|L ) _ 1 ) . ) — + & — &
- Ta Yika|rqe=1 % Yikb|ry=1 n* Yiktlu=1 — Yikclu=1 €ikalwa=1 — €ikblwi=1
L =1 i=1 =1
B Na ny n*
—F L . N . _ L . — U E: —E
— Yikalre=1 Yikb rp=1 * Yiktlu=1 Yikelu=1 + €ikalwa=1 €ikblwi=1
ng np n
L i=1 i=1 =1
Wa Wp n*
= 1 ) 1 . 1 € g
= ika|wa= ikb|ry= * iktlu= ikclu= ika|wa= ikb|wy=
wa Yikalwa=1 — o, Yikblry=1 — 7% Yiktlu=1 — Yikclu=1) T €ikajwo=1 — €ikblwy=1
i=1 =1 =1
Wq n* n* wy
_ 1 1 1 1 = =
= wr D Yikalwo=1 = 77 ) Yiktlu=1 T | 757 D Yikclu=1 — 3, D _ Yikblwi=1 | T €ikajwo=1 — €ikblwi=1
Wq, n n wp,
=1 =1 =1 =1
Wq Wy
_ 1 - - 1 _ _
= o E Yikalwo=1 = Yiktlu=1 + | Yikclu=1 = - E Yikblwi=1 | T+ €ikalwa=1 — Eikbjwi=1 (A75)
=1 =1

We can expand the first term in the above line as follows:

Weq, Mg n*
1 Z _ 1 Z 1 Z
Wa Yikalwe=1 = Wa Yika)sa=1 + Wa Yikalu=1 (A76)
i=1 i=1 i=1
Note that the second term in this expression can be rewritten as:
n* n*
1 ) - _n ,
Wa Yikalu=1 = Wan® Yikalu=1
i=1 i=1
n*
_ N+ (We—wa) E :
- Wan* Yikalu=1
i=1
TL* n*
_ n*—wg Wq
= wan* E Yika|u=1 + Wan* E Yikalu=1
i=1 i=1
n* n*
— —Ma 1
= Wan* E Yika|u=1 + n* E Yika|lu=1
i=1 i=1

*

= — na Z Yika|u=1 + gika\u:l (A77)

Wen*
i=1

We can then use Lines[A76] and [A77] to rewrite the overall bias term in Line [A73] as

S39



*

Bias <7A_k|u:1) = w% Z Yikalso=1 — poos Z Yikalu=1 T Yikalu=1 — Yiktju=1" (A78)
= i=1
Wp

1 _ _
Yikelu=1 — E Yikblwy=1 | T €ikalwa=1 — €ikblw =1 (A79)
=1

The second difference in Line [A81] can be rewritten as simply the average difference between the n* always-
responders’ truthful answers to question & in the world where they completed Survey B in Wave 1 and in the world
where they did not. In other words, it is the average causal effect of completing Survey B in Wave 1 on the always-

responders’ Wave 2 truthful answers. We can think of this possible difference as a potential type of priming bias:

Biasp (Thju=1) = = Z Yikalu=1 — 75 Z Yiktlu=1 = Yikalu=1 — Yikt|u=1 (A80)

Therefore, we can rewrite the overall bias as

*

Bias (%k|u:1) - wLa Zyika\szzl  won (%k\uzl) + (Agl)
i=1
wp
Yikelu=1 — wlb Z Yikblwi=1 | T €ikajwa=1 — Eikbjwi=1 (A82)
i=1

We can now turn our attention to the first difference in Line [A82] We can begin by noting that

wy mp n*

L - 1 . 1 .

wy E Yikblwi=1 = 7 E Yikblsi=1 T 5 E Yikblu=1 (A83)
i=1 i=1 i=1

‘We can break the second term down further as
n* n*
o Yikblu=1 = wen* Yikblu=1
i=1 i=1
_ n*+(wp—wp)
= wyn* E Yikblu=1
/rL*
n*—w w
= e E Yikblu=1 + 5o E Yikblu=1
i=1 i=1
n* n*
—m, 1
= o E Yikblu=1 + 7= E Yikblu=1
i=1 i=1

*

m § : _
- _wbrl;* Yikblu=1 + Yikblu=1
i=1

*

= Yikblu=1 — gyr= > Yiksju=1 (A84)

i=1
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Using Lines[A83]and [A84] we can now rewrite the overall bias term from Lines[A8THA82] as

*

Ma n
. ~ 1 Mg . A
Bias (Tpuz1) = o E Yikalso=1 — poos E Yikalu=1 + Biasp (Fguz1) +
=1 =1

*

mp n
_ 1 _ m _ _
Yikelu=1 = | w, E Yikb|si=1 T Yikblu=1 — wb,bl* E Yikblu=1 | T €ikajwy=1 — €ikblwi=1

i=1 i=1
ma n*
=1 Yi — Yi + Bias (% )+
Wa ika|sa=1 Wan* tkalu=1 P \"klu=1
i=1 i=1
n* my
_ _ my, 1 — _
(yikc\uzl - yikb|u:1) + went E Yikblu=1 — &, E Yikblsi=1 T+ €ikalwa=1 — €ikblwi=1
i=1 i=1

Similar to what we did in Section 2 of the article, we can separate the expression ¥xcju—1 — Yikblu—1 10to the bias

caused by temporal factors and the bias caused by anticipatory factors:

Yikelumt — Yikbju—1 = Biast (Teju=1) + Biasa (Trju=1)

where
n* n*
. ~ 1 1 _ _
Biasy (Tk|u:1) = o= E Yikclu=1 — 7% E Yikbelu=1 = Yikclu=1 — Yikbclu=1
i=1 i=1
n* n*
. ~ 1 1 _ _
Biasa (Tk\uzl) = o E Yikbelu=1 — 7= E Yikblu=1 = Yikbclu=1 — Yikblu=1
i=1 =1
As in Section 2, the term v,z represents individual ’s Wave 1 truthful response in the counterfactual world where

the event “did not happen.” Interpretation of this term depends on the counterfactual that the researcher has in mind.

The overall bias in the estimator can now be written as

Bias (%k\uzl) = wLa Z Yika|so=1 — ﬁ Z Yikalu=1 + Biasp (7A—k|u:1) + Biast (7A—k|u:1) + (A85)
1=1

i=1

n* myg
. A mp 1 _ _
Biasa (Tyjuz1) + oo E Yikblu=1 — 7 E Yikbls1=1 T Eikajws=1 — Eikbwi=1 (A86)
=1 =1

‘We can next note that

Ma n* me n*
1 m _ 1 1
o E Yikalsa=1 — Zonr E Yikalu=1 = ( “) e E Yika|so=1 — 7= E Yikalu=1
i=1 i=1 i=1 i=1

= (wz> (gika|52:1 - gika|u:1) (A87)

3

d

3

Similarly,
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n* my n* my,

mp 1 _ [ my 1 1

wpn Yikblu=1 — 3, Yikblsi=1 = | 4, oy Yikblu=1 — 7o Yikb|s1=1
i=1 i=1 =1 i=1

- (%) (gikblu=1 — ﬂikb\slzl)
We can now rewrite the overall bias in the estimator from Lines|A8SHA86/as

Bias (f'k\uzl) = e (?ika\sgzl — gikam:l) + Biasp (%k|u:1) + Biast (%k|u:1) 4
BiCLSA (7A'k|u:1) + Z]L_: (gikb\uzl — gikb|51:1) —+ Eika|w2:1 _ E’ikb\wlzl
= z}l—: (gika\w:l - gika|u:1> + :Z_: (gikb|u:1 — gl‘kb‘81:1) +

Biasp (Thjuz1) + Biast (Teju=1) + Biasa (Tuju=1) + Eikajws=1 — Eikbjwr=1
The expression in Line can be labeled

Biasp (Tru=1) = . (Yikalss=1 — Jikaju=1) + e (Gikbjum1 — Yikbjs1=1)

(A88)

(A89)

This bias term captures the bias induced by differential dropout rates based on which survey respondents were

assigned in Wave 1.

The final difference in Line is just the potential bias caused by differential misreporting between the respon-

dents in Waves 1 and 2. We can label this bias
Biasm (%k\uzl) = gil~::a|w2:1 - Eil~cb\w1=1

Therefore, we can now write the overall bias term in condensed form as

Bias (f'k|u:1) = Biasp (ﬁ;‘u:l) + Biasp (%kluzl) + BiasT (%k|u:1) + Biasa (%k‘uzl) + Biasym (7A-k|u:1)

where

_ ma (5 ~ my (= -
= o (Yikalss=1 — Yikaju=1) + or (Yikblum1 — Yikbjs1=1)

= Yikalu=1 — Yiktju=1

= Yikbelu=1 — Yikblu=1

k|u:1) = €ikalwo=1 — €ikblwi=1
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8 Pre-event/Post-event Survey Designs in APSR, AJPS, and JOP (2015-24)

Table|I]lists more than 25 studies that use the pre-event/post-event survey design. These studies examine a wide range
of important events and outcomes of interest to political scientists. Mufioz, Falc6-Gimeno, and Herndndez (2020:
A7) also provide a table with information on 44 studies published in a variety of journals that focus on unexpected
events. Their list spans political science, sociology, and economics. In short, studying the impact of important events

through surveys is a key part of social science and will likely remain common well into the future.

Table 1: Selected pre-event/post-event survey design studies

Study Event(s) Outcome(s)

Balcells, Tellez, and Villamil 2024 Russian invasion of Ukraine Spanish nationalism

Bartels, Horowitz, and Kramon 2023 Kenyan supreme court ruling Judicial support; partisan backlash
Cohen et al. 2023 Bolsonaro election Allegiance to political system
Epifanio, Giani, and Ivandic 2023 2005 London bombings Support toward curbing freedoms
Harding and Nwokolo 2023 Boko Haram attacks Political ft:?nslti;cr;ecllteigg%lcﬁg:;tliﬁcation;

Mettler, Jacobs, and Zhu 2023 Republicans gaining control Support for the Affordable Care Act
of Congress and Presidency

Repression of Moldova

Pop-Eleches and Way 2023 electoral protests

Opposition support

Singh and Tir 2023 Terrorist attacks Reported electoral participation
Bateson and Weintraub 2022 2016 US presidential election Trust in the United States
Berliner and Wehner 2022 Audits Approval of Mayors

Hale 2022 Invasion of Crimea Reported support for Putin
Holman, Merolla, and Zechmeister 2022| 2017 Manchester terrorist attack Support for Teresa May
Kalla and Broockman 2022 Personal persuasion campaigns Affective polarization
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Table 1: Selected pre-event/post-event survey design studies (continued)

Study

Ayoub, Page, and Whitt[2021

Croke 2021

Goldsmith, Horiuchi, and Matush [2021

Reny and Newman [2021
Batto and Beaulieu|[2020
Mikulaschek, Pant, and Tesfaye [2020

Frye and Borisova 2019
Alkon and Wang 2018
Flesken 2018

Baker et al. 2016
Bishin et al. 2016
Bisgaard 2015

Branton et al. 2015
Tesler 2015

Hirano et al.[2015

Event(s)
Pride event
Anti-malaria campaign

High-level state visits
George Floyd protests
Legislative brawl
Iraqi PM resignation

Election; protest
Pollution reduction intervention
Romanian campaign and election
Party brand change
Supreme Court ruling
Economic shock
2006 immigration protests
Elite political communication

Primary campaigns and elections
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Outcome(s)

Attitudes toward LGBT+ community

Leader approval
Approval of visiting leader

Attitudes toward the police
and African-Americans

Evaluation of the legislature

Support for violent opposition;
public service provision optimism

Trust in government
Regime evaluation
National and ethnic salience
Party support/identification
Attitudes toward gays and lesbians
Attitudes related to the economy
Immigration policy preferences
Public opinion

Perceptions of candidates
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